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Task 137003, "Prevention of Dynamic Aeroelastic TItabilities in Advanced
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Task Engineer.
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programs are available upon request from the Air Force Flight Dynamics Lab-

oratory/FY, Wright-Patterson AFB, Ohio 45433.

The work reported h~rein was conducted Juring the period of December 1960

to August 1971.

The Principal Investigator was Joseph P. Giesing. Mrs. T. P. KaIman was

responsible for the computer programing and Dr. W. P. Rodden was a McDonnell

Douglas Compiny Consultant. Others have made significant contributions to this
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The contractor's designation of this report is mUC-JO944. The report was

released by the authors in August 1971 for publication as an AFFDL Technical

Report.

This technical report has been revi.ewed and is approved.
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ABS FRACT

A technique for predicting steady and oscillatory aerodynamic loads on

general configurations has been deveioped which is based )n the Doublet-Lattice

Method and the method of images. Chord- and spanwise loading on lifting

surfaces and longitudinal body load distributions are determined. Configura-

tions may Le composed of an assemblage of bodies (elliptic cross s2ctions and

d distribution of width or radius) and lifting surfaces (arhitrarj planform

and dihedral, with or without control surfaces). Loadings predicted by this

method are required for flutter, gust, frequency response and static aero-

elastic analyses and may be used to determine static and dynamic stability

derivatives. Volume I presents the theory and calculated results while

Volume II presents the details of the computer program used to implement

the theory.
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NOMENCLATURE

A Reference total area

a Average body width

a0 Local body width

a Radius of curvature

b Average body height

bo 0Local body height

C Position vector to center of curvature

C zRolling moment coefficient (momient/qA ) (+ right wing dovn)

Cm Pitching moment coefficient (moment/qAc) (+ nose up)

Cn Yawing moment coefficient (moment/qAs) (+ nose right)

C Pressure coefficientp

C y Side force coefficient (Force/qA) (+ out right win:)

Cz  Vertical force coefficient (Force/qA) (+ up)

c Local chord length

c Reference chord length

c m  Local pitching moment coefficient

c n Local normal force coefficient

c.p. Center of pressure

D Matrix relating normalwash to lifting pressures for lifting
surface elements

D I  Matrix relating normalwash to lifting pressures for image
elements

DMatrix relating normalwash to lifting pressures for elements
and all their images

Matrix relating normalwash to lifting pressures for elements
plus their images plus the contributions due to symietry and
ground effect

vii



DT  Partitioned matrix [DQ E-, relating normalwash to lifting
pressures and doublet strengths

Do  Matrix relating the flow normal to a body surface (at the
meridian angle 0) to the liftinj pressure for elements and their
images

D(Y),D(z) Matrix relating the average side- or upwash at a body due to
lifting surface elements

D2D Matrix relating the doublet strength to me local up- or sidewash
using quasi-steady, cwo-dimensional slender-body theory

d Spacing of doublets or vortices within slender bodies (sinulation

of body aspect ratio (b/a))

E Matrix relating normalwash to axial doublet strengths

Matrix relating normalwash to axial doublet strengths with the
effects of symmetry and ground effect included

E(y),E(z) Matrix relating the normalwash to y- or z-oriented axial doublets

eLifting surface element semi-width; also cross-sectional element
semi-width

F(Z),F Y), Total force on a body due to a point pressure doublet. SubscriptZ Z indicates direction of force; superscript indicated direction of
F(Z).F (y )  pressure doublet

f Nondimensional deflection. Also function involving Hankel functions

H(2) Hankel function of the second kind of order v
V

h Deflections normal to a lifting surface

h y,h Deflections of a body in y- and z-directions, respectively

i,j,k Unit vectors in x-, y- and z-directions, respectively

1 F Unit vector in the direction of the body force

Velocity kernel function; the normalwash due to a point pressure
doublet; also (a2 -b2)/4

K Potential kernel function; the potential due to a point pressure

doublet

k r Reduced frequency (uZ/2U)

viii



L The normalwash due to a potential doublec

L The potential due to a potential doublet

M Mach number; also normalwash due to a point source; also moment

Orientation of pressure coublet

n,t Outward normal and tangent vectors

p Function involving Hankel functions

Q Generalized force; also modified ac'..eatj,,n notentiai

q Dynamic pressure

qGeneralized modal coordinate

R (x- )2 + r2

r (y - q)2 + (z - 02

r (a + b)/2

s semi-span

U Freestream velocity

w Normalwash boundary values

wi  Normalwash due to image lifting surface eements

wn Normalwash due to body interference doublet dcs-vibution

wR  Ws + W I

ws  Normalwash due to lifting surface elemints

w- w - AW

w Normalwash in the circle plane

x,y,z Coordinates of a receiving point

XM Coordinate about which moments are taken

angle of attack

y Dihedral angle: yr' receiving point, ys, sending point

Vortex strength

ix



ACp Lifting pressure

ZQ Modified acceleration potential jump

Aw Normalwash due to slender body elements

Ax Longitudinal length of lifting surface box

A Lorgitudinal lengthl of axial element

A'P Potential jump

6Symmetry plane indication (I symmetry, 0 no symmetry, -1 anti-
symmetry); also a delta function; alse a virtual displacement

6A Elemantal area

C Ground-effilct indication (-1 ground effect, 0 no ground effect,
1 antiground effect)

z-coordinate of sending point

y-coordinate of sending point

Lateral coordinates in the plane of the lifting surfat:c

e Meridian angle for a body of circular cross section

Sweep of 1/4-chord of lifting surface 0,lment. also inclination
angle in z-y-plane of a crcss-sectioral surface element

vd Quadrupole strength

Vn Doublet strength of interference-body elements

Doublet strength of slender-body elements

-Multipole strength in circle plane; v gives order of pole

Doublet strength of modified acceleration potential distribution
y z in y- and z-directions; also reducticn factors for image doublets

v-coordinate of sending point

P Distance from center curvature to external singularity

Source strength

Velocity potential

Acceleration potential

WFrequency

x



c Center of axial-body element

I Leading edge of body element

2 Trailing edge of body element

Subscripts and Superscripts

a Body axis

b Body

I Image

LL Lower left-hand quadrant

LR Lower right-hand quadrant

n Resid.!al or interference flow

r,s Receiving and sending points, respectively

UL Upper left-hand quadrant

UR Upper right-hand quadrant

s Steady

y,q y- and z-directions

1On the body surface

1,2 Planar and nonplanar parts, respectively

1/4 Quarter chord of element

xi



1.0 INTRODUCTION

Until several years ago the kernel function procedure was the best known

and most widely used lifting surface theory. The classic report on this pro-

cedure is by Watkins, Runyan and Cunningham! There have been many variations of

this procedure; however, it is not our purpose to present a survey of them.

Ashley, Widnall and Landahl 2 have already prepared an excellent survey of the

lifting surface theory.

The use of lattice methods in steady flow goes back to Falkner 3 and even

further. Recent developments and improvements made by Rubbert', Dulmovits ,

Hedman6, Belotserkovskii7, Giesingn and others have rejuvenated and popularized
this method. The lattice method produces very accurate results even though

the numerical technique is relatively simple. James9 has analyzed a two-

dimensional model of the steady lattice theory. He has proven that when the

vortex is placed at the 1/4-chord point of each element and the control point
is placed at the 3/4-chord point of each element (the lifting surface is

divided into a number of elements), then the following is true: 1) the lift

and moment are exactly correct, 2) the Kutta cond!tion is satisfied auto-
matically without the use of loading functions, 3) in the limit of a large

number of elements the correct leading edge singularity and correct trailing
edge zero are obtained, and 4) the method works just as well for cambered
surfaces whose distributions are continuous.

The lattice method is simple, versatile and accurate. The accuracy has

already been discussed. The simplicity arises from the fact that no loading

functions are required. The method is versatile because no prior knowledge

of the solution is required as with the kernel function procedure. Loading

functions appropr:ate to the particular problem must be chosen ahead of time

for the kernel function procedure. It has been demonstrated that the lattice

method can handle a very wide variety of configurations, including: 1) wings
of arbitrary planform, 2) wings with partial span control surfaces, 3) T-tails,

wing-pylons, wing-tails, 4) wings in ground effect, and 5) annular wings, wings

with arbitrary dihedral.



Since the steady lattice method has met with such success, it seems

only natural that it should be extended to unsteady (oscillatory) flow.

Albano and Rodden' o have done just that. (A completely independent unsteady

lattice procedure was developed by Stark11.)

The new unsteady method has been termEd the Doublet-Lattice Method (DLM).

Further extensions, applications and refinements of the OLM are found in

references 12 through 18. The DLM has proven as versatile as the Vortex

Lattice Method and can handle the same wide variety of configurations (see

references 13, 18 and Part i of this report). The attributes of the Vortex

Lattice Method, i.e., simplicity, accuracy and versatility can be applied

equally well to the DLM. Because of these attributes it was selected as

the basis of the present method.

Of major interest in this report is the interaction of bodies (e.g.,

fuselage, nacelle, store) with lifting surfaces (e.g., wing, tail, pylon,etc.).

There are two basic approaches to this problem: 1) one in which elements are

placed on the body surfaces, and 2) one in which images are placed within the

bodies. Recent advances in the first of these approaches have been made by

Woodward19 , Labrujere 20, and Bradley and Miller 21 for steady flow. Part I of

this report presents an extension of these methods of oscillatory flow. Recent

advances in the second of these approaches have been made by Giesing8 , Spangler

and Mendenhal1 22 , Borland 23, and Chou 24 for steady Flow. This report (Part II)

presents an extension of these methods to oscillatory flow and very general

configurations.

The approach of this report is to use the method of images directly

replacirng the steady vortex lattice on the lifting surfaces and image surfdces

with an unsteady vortex lattice DLM. The advantage of using images over other

methods is the fact that images do not introduce any new unknowns into the

problem.

This approach furnishes a practical method for handling general configu-

rations efficiently. Specifically, the configurations considered may include

a collection of bodies (e.g., fuselage, nacelles, stores) and lifting surfaces

(e.g., wing, tail, pylon, etc.). The configuration may oscillate in any mode,

2
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rigid or flexible, and may operate in or out of ground effect. Outputs from

the method are: generalized forces and aerodynamic parametsrs such as span
loads, center of pressure, lift, moment, etc. The method can also be used to

obtain dynamic stability derivatives (reference 14).

3



2.0 THEORETICAL DEVELOPMENT

2.1 Outline of the Problem and Solution

The velocity normal to an oscillating surface or body, W = UIRe(ws e i Ct

is related to the lifting pressure Ap = qRe(AC pe ) by the following inte-

gral equation derived in Appendix A:

W s(XgyZsyr ) = -ff K(x - ,q y - n, z - , Ys' Yr', k r' M)AC p( ,r;,,)ds

L.S. (2.1-1)

where L.S. indicates integration over all lifting surfaces. This is the

familiar integral equation of lifting surface theory for surfaces alone.

Here ys) Yr are the sending and receiving surface dihedral anqles. If a

body is introduced, there are additional contributions to the noral velocity.

The first contribution may be called the slender body term and represents the

flow field generated by bodies without considerations of interference.

SW(x:yZyr % L-f L(x - , y - 0a, z - a' ys Tr' krI M)Is ( )dE

P.

+ I_-J M(x - , y -,a -a' Yr' M)a( )d (2.1-2)

B.

The limit B. indicates integration over all bodies; these integrals are also

derived in Appendix A. The subcript a on n and c indicate the location

of body axes.

Here the term Z ( )* represents an axial multipole distribution (dipoic.
quadrupole, etc.) whose orientation is given by ys. The spcond integral

exists only in steady flow and is a source distribution used to represent

the body volume effects. The sler.der body terms are known since s (E) and

c( )**are determined using an appropriate slender body theory.

*Actually ll( ) is twice the classic doublet strength vl( ).

**Currently in the Present Method sources are excluded since they do not

exist for unsteady flow and have a ;mall effect even in steady flow.

4



A second contribution to the normalwash flow field caused by the intro-

duction of bodies into the flow field arises from "image" lifting surface

elements. These are placed within the body to help divert the flow around

a body in the presence of a lifting surface. The strength of the image

elements is the same as the external elements.

VO(X,y,Z,yr) - ff K(x - E, y - nI, z - Ys1 ' 
Tr' kr' M)ACp (,n, )ds

L.S. 
(2.1-3)

The subscriptl on n;' and ys indicates the image position on the image

surface.

A third contribution to the normalwash Flow field caused by the bodies

is generated by an interference doublet distribution )
'S

Wn (X,Y,Z,Yr) L 8f L(x - E, y - a, Z "a' s'r' kr' M)in( )d (2.14)

B.

The form of this equation is identical to the first integral of equation

(2.1-2). The reason it is not combined with 1' is the fact that 's is

known while n like tC is unknown.

In the direct problem, the normalwash boundary conditions are specified

and the lifting pressure, ACp, and body interference distribution, pI' are

solved for:

w = ws + Aw + WT + Wn  (2.1-5)

Here w is the prescribed normalwash on lifting surfaces and bodies. If the

Iknown quantities are placed on the left-hand side while the unknown quantities

are placed on the right, then the following equation results:

11 f L- d, -f Mod)= L- ff KACpds + L.S. IA~d

+ rf L d (2.1-6)

B.



Here the subscript I on K indicates K(x - , y - nI, z - l Ysl' Yr' ky, M).

w - AW = f (K + Ki)ACpds + L Ld (2.1-7)
L.S. B.

There are still further contributions to the normalwash and these arise

from planes of symmetry and ground effect. If the assumption :s made that the
right half of the aircraft lie. in the upper right-hand quadrant of the z-y

plane, then a subscript UR may be applied to contributions made from lifting

surfaces in this quadrant. S;i'ilarly, UL indicates upper left which contains

the contribution from the left side of the aircraft. The subscript LR

indicates lower right and,in tois quadrant, the ground effectof the right side

is contained. The subscript '.; indicates lower left and this quadrant

contains the contribution of t. ,. ground effect of the left half of the air-

craft. Equation (2.1-7) may be .expanded to include these contributions as

f 'l 1 ows:

w - (AwUR + 'AwUL + eWLR + C6AWLLP

- ffl(K + KI . (K + KI u L (K + KI + c(K + KI) ACdsf l )UR +)UL K))LR apd

+ J LUR + LuL + LLR + E6L. nd (2.1-8)

B.

The quantities 6 and c are thc tymmetry and ground effect indicators.

For instance, 1 : l,0,-l indicates sy-metry, no symnetry, and antisymmetry,

respectively. Similarly, = -l,O,l 'r;icates ground effect, no groundI effect, and anti-ground effect, respe:ti- . The chanqes to the argument lists

denoted by these subscripts are as follow-

UR: Ys = s, r = , y :

UL: Y = -n, s = , s

LR: n = ,, Y -' Y =

LL: Ys ...., = - ' Ys

6



The bacic method of solution of Eq. (2.1-8) is to discretize the lifting

surfaces into small boxes ard the bodies into sma axial elements. The

unknowns are assumed constant over these elements and the normalwash boundary

con.ition is applied to each box and element. This forms ;s many equations as

unknowns and the system may be solved. Eq. (2.1-8) becomes:

N1 N2

WTr Z ACpsff KT rs + ns  f LT (2.1-9)
s=l ELEMENTs  s=1  ELEMENT rs

where s and r indicate sending and receiving points, respectively, and

wT  T

AWT (AwUR + 6AWUL + SA;;LR + c6AWLL)

Kr = -{(K + KI)UR + 6(K + KI)UL + e(K + KI)LR + 66(K + KI)LLI1
LT 8Tr {LUR + LUL + LLR + 6LLL}

Nl number of lifting surface boxes for all surfaces

N2 = number of axial body elements for ali bodies

In matrix notation:

ST DnT] (2. 1-10)

where
[DT : [D -E-] (.-I

D {(D + DI)UR

+ 6(D + DI)UL

e(D + DI)LR

+ C6(D + DI)LL} (2.1-12)

7



Here

Drs ff " K ds

ELEMENT

DI f K1 ds = K(x - k y - I Vr' Y kM)ds
rs ELEMENT ELEMENT

(2.1-13)

The matrix elements Drs have the subscript r on the receiving point quanti-

ties, X)YZ~yr and the subscript s on the sending element quantities

,n, ,ys , ELEMENT. The matrix partition E is:

r~s = 1 -UE + 6UU+ eL n + LL

(2.1-14)

E= ff Ld

BODY
ELEMENT

Once wT is known, AC and 11n can be found, and these can be used to find

the loads on the lifting surfaces ard bodies.

The calculatioti of the flow fic d due to the slender body terms, i.e.,

1s and ac is performed using the same discretization technique.

N3 N3

twr  f Lrsd + - s f Mrd (2.1-15)
sml BODY k=l BODY

ELEMENTS ELEMENTS

where N3 is the number of slender body elements. If symmetry planes and

ground effect are accounted for and matrix notation is introduced, then Eq.
(2.1-15) becomes:

{AwT} = [LT] {%} + [MT]{a} (2.1-16)

where
1

MT :- {MUR + 6MUL + eMLR + EMLL}

8



Slender body theory states that Is is directly proportional to the

local velocity normal to the body axis (the direction of ps  is parallel to

this velocity).

's = wD2D (2.1-17)

where D2D is the proportionality constant which is dependent on local oody

cross section. The values of w which act normal to the body axis

(Eq.(2.1-17)) are part of the larger set that acts normal to all surfaces

and bodies.

2.2 The Normalwash Boundary Conditions

The normalwash w must be determined at each lifting surface element

(or box) and at each axial body element in both the z- and y-directions.

The normalwash boundary conditions are obtained by taking the substantial

derivative of the modal deflections. There are various method of describing

these modes and several of these will be discussed. Only the first of these

methods has been incorporated into the present method kthe polynomial approach).

The polynomial approach lends itself to scientific investigation where the

modes are simple. When the modes become complicated, however, it may be

desirable to incorporate other more practical modal input methods.

2.2.1 Polynomial Modes

The total deflection distribution of a lifting surface normal to itself

is made up of a set of modes, f:.

NM

h =c ifi (2.2-1)

where qi are the generalized coordinates and NM is the number of modes.

The total normalwash is likewise

w:A-I L qiwi (2.2-2)

9



where
df i

wi  + i fc

d (x/E) + 1 i

or

wi = + ik 2f i

Here

k r -

r 2U.

For lifting surfaces the modes may be approximated by

5 5
fi a- x ain (2.2-3)

n=O m=O

5 5
dfc Z 0na in n (l (2.2-4)

d(x/ E) nc m=inn=O m=O i

where 7 is the lateral distance in the plane of the lifting surface.

Eqs. (2.2-3) and (2.2-4) represent fifth-degree polynomials in both the

lateral and longitudinal directions.

When dealing with bodies, two separate directions of motion are possible:

z-motion and y-motion. However, bodies have no lateral coordinate, thus the

mode shapes are as follows:

5

f : Z azin (2.2-5)

5

fyi = ain(X) (2.2-6)

10



dfz 5 n

nazin(1) (2.2-17d xlc) n:O
'n=0

dfyi  5 x %\n-l

di. - nay in ( (2.2-8)
n=O

The wi arrays have the following order: first, all of the lifting surface

normal wash values, w, are determined, then the z- or upwash values, wz, and

then the y- or sidewash values, Wy.

fw}i w (2.2-9)

2.2.2 Numerical Input

In many instances it is inconvenient to determine polynomial coefficients

from modal data. The values of w and f could then be supplied directly.

An alternate scheme is to supply only h and require the program to take

the necessary derivatives numerically. Various fitting techniques could be

used including the spline fit of Harder 25 .

A second alternate is to supply only the values of dfi/d(x/c) and

integrate for the values of fi" Aso needed is one value of Fi at eadi

spanwise station to establish the level of fi"

Interpolation schemes could be used to reduce the number of input values.

Instead of supplying deflection data at each spanwise strip, it could be

supplied at intervals along the span and interpolated at the intermediate

spanwise locations.

I1
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2,2.3 Aerodynamic Influence Coefficients

There are many schemes for generating aerodynamic influence coefficients

(AIC§) and some of these are discussed in Part I of this report (page 28).

The basic idea of the AIC approach is to derive a set of elementary modes

which can be used to build up any desired mode shape. These elementary mode

shapes are independent of the mass or stiffness properties of the aircraft

and, thus, can be used to build up a solution for various fuel conditions,

for example. One way to derive elementary mode shapes is to deflect a series

of modal defleution points on the structure one at a time while holding all

the others fixed. Once the generalized forces for this set of elementary

modes are known for a particular aircraft planform, Mach number and frequency,

aerodyna:iic solutions for all mass and stiffness distributions can be found

simply by a matrix multiplication of the modal deflections and the AIC

matrix.

Q = {f}T [AIC] {fi} (2.2-10)

where f. is a set of modal deflections for mode j and fi is the same

for mode i.

The type of curve fit used for the generation of the elementary mode

shapes may vary. Part I of this report offers several possibilities (see

page 31). Recent work by Harder, et.al. 25 already referred to, on two-

dimensional surface spline fitting of deflected surfaces may offer a very

accurate and versatile technique for generatAng elementary mode shapes.

For bodies the usual one-dimensional splie could be used.

2.3 The Lifting Surface

The basic technique employed to represent the lifting surfaces is the

Doublet Lattice Method (DLM). The DLM is an extension of the steady flow

Vortex-Lattice Method to oscillatory flow. Developments of the Vortex-Lattice

Method include those of Rubbert 4 , Dulmovits5 , Hedman 6, Belotserkovskii7 ,and

Giesing 8 who extended the method to wing-body ccibinations. The original

extension of the steady Vortex-Lattice Method to unsteady flow was made by

Albano and Rodden10 . Adaptation of the DLM to AIC generation was done by

12



Stahl, et al. 12  Extensive correlations for nonpianar configurations were

made by Kalman, el. al. 13  A refinement of the method for nearly coplanar

configurations is reported in Part I of this report (section 2.1, appendices

A, B and C) and also by Rodden, et al.1 8  The use of the method for stability

derivatives is given by Rodden and Giesing is, and its use in gust analysis is

given by Giesing and Rodden"6 . An extension to induced drag distribution was

made by Kalman, et al.
17

The DLM has proven to be a simple, versatile and accurate method for

the solution of unsteady nonplanar lifting surface problems. The general

nature of the solution need not be kiown in advance as with the kernel func-

tion techniques which utilize a standard set of pressure loading functions.

Elimination of the loading functions simplifies the analysis since the

complicated and time consuming quadrature integrations of the load4ng functions

and kernel are eliminated. The method is versatile since there are essentially

no restrictions on the configurations that can be handled. It has been shown

to be accurate by James9 who performed analytic studies on the steady two-

dimensional version,and through the many correlations with experimental data

and other analytical methods.

The flow singularities used to model the lifting surface are steady

horseshoe vortices and oscillatory doublets along the bound vortex. The doublet

line is equivalent,at zero frequency, to the horseshoe vortex, and thus the

horseshoe vortex need not be used. However, since the effects of the vortex

system can be analyzed exactly, while the effects of a doublet line can only

be approximated, improved accuracy is obtained by using both the vortex and

doublet systems. In this way, the vortices represent the steady-flow effects,

and the doublets represent the incremental effects of oscillatory motion.

The configuration is idealized by dividing the surface(s) into small

trapezoidal elements (ooxes) arranged in strips parallel to the freestrea'a

so that surface edges, fold lines, and hinge lines lie on box boundaries

(sketch 2.3-1). Then, to ,-Epresent the steady-flow effects, a horseshoe

vortex is placed on each of the boxes such that the bound vortex of the horse-

shoe system coincides with the quarter-chord line of the box. To represent

the oscillatory increment, a distribution of acceleration potential doublets

(which have the steady-flow acublet strength subtracted) of uniform strength

13



SX.

,-BOUND VORTEX
AND LINE OF
DOUBLETS ( )

DOWNWASH
COLLOCATION TRAILING
POINT VORTICES

Sketch 2.3-1. Surface Idealization into Boxes and Location of Vortices,
Doublets and Collocation Points

is superimposed on the bound vortex. The surface boundary condition is a

prescribed normalwash applied at the control point of each box. The control

point is centered spanwise on the three-quarter-chord line of the box

(sketch 2.3-1). The influences of all vortices and doublets are summed for

each control point to obtain the total dimensionles normalwash, w, at the

control point.

The expressions for Dr, the elements of Lhe influence matrix, areUrs'

well documented in Part I and will not be repeated here. A general description

of the method of integration will suffice. The expression for Drs is given

in Eq. (2.1-13).

D I ff Kds (2.3-1)Drs =8r

ELEMENT
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The kernel K is split up into the following components
ITIK s  T*KS2

K = ---- + 4-- -

r - r

F TI(K1 - K(s)) /2 2 r 4 2

where the sending and receiving subscripts (s,r) have been dropped for

convenience. The first term in braces is the steady part of the kernel while

the second and third terms are the planar and nonplanar parts, respectively,

of the unsteady increment. Integration in the c-direction (parallel to the

freestream) is done by lumping the value of the integrand at the one-quarter-
chord point of the box. The integration of the steady term in the spanwise

direction is done using the law of Bjot and Savart. Spanwise integration of

the planar and nonplanar terms is done by approximating the numerators by

parabolas. The resulting expressions are analytically integrable.

D = D D(1') + D(2) (2.3-3)
e K(S) 's)'

D(s) =Ax-ll + K2 1 dn (2.3-4)

-e n-2 I

D T=,8 J I r 2  r d (2.3-5)

-e
e A2 _+ -(

Dr2 Ax8_ + Bin +C1
D r IA 1 dn (2.3-5)

TIT r2

-e

where

A1 
- 2 + BIn + C1  T1(K1 - KS)

(2.3-7)

A , + B5 + C2  T2 (K2 - K2

15



the coefficients A,B, and C are found by evaluating the kernel at the center

and both edges of the element. Here n is a spanwise coordinate in the plane

of the element centered on the sending element, e is the semi-width of the

sending element an the suh,-r ipts (r,s) have been dropped again for con-

venience. The result ol inteutting Eq. '2.3-4), i.e., an expression for the

steady horseshoe vortex, is found in Par: I, Appendix C, Vol. I, page 68. The

integrations indicated in Eqs. (2.3-5) and (2.3-6) are found also in Part I,

Vol. I, Appendix B, page 58. Two expressions for D (2) are found on pages 59

and 60 of Part 1, Vol. 1, Appendix B.

The matrix formulation for an isolated lifting surface without ground effect,

symmetry or images, given in terms of the influence coefficient matrix [D], is

then
{w} = [D] { } (2.3-8)

2.4 The Isolated Body

It is desirable to use an axial system of singularities to simulate the

effect of bodies in the fluid since they require much less computational

effort than do surface singularity distributions. Generally,axial distribu-

tions are associated with slender body theory.

Slender body theory has hWd a long history and it is not the purpose 6f

this report to detail its development. Only some of the more important works

will be mentioned. The doctoral thesis by Revell (see reference 26) gives a

very elegant and detailed description and cites over 200 references.

Munk' is generally h first of any references r..aing o steady

slender body theory. Karm'n28 applied a modified version of Munk's theory to

airship hulls (K&rnafi's method will be discussed later in this section).

Lighthill 29 may be mentioned next along with Jones 30 for extensions to slender

wings and Miles 31 for extension to unsteady flow. Many attempts have been

made to extend the slender body theory to higher order. Ward 32 has given

second-order effects for the nonlifting component of the pressure for super-

sonic flow. Adams and Sears33 have extended this method to subsonic flow

using the Fourier transform. Van Dyke 34 attempted a second-order "lifting"

solution and was only partially successful. Van Dyke suggests using the

first-order solution for the lifting components (doublets) but suggests using

16
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the higher order axial flow solution along with a higher-order pressure formu-

lation to find the pressures and forces. Such aformulation allows the coupling

of the cross flow with the axial flow. This coupling does have an effect on

the axial loading; however, for many bodies (shown in reference 34) the first-

order solution is very good over a wide range of Mach number.

The only completely consistet second-order theory ha been developed by

Revell 26 . Revell attacks the second-order solution by a complicated iteration

scheme.

The methods of Hess and Smith35 and Landweber 36 may be mentioned in

passing. These methods are exact, surface singularity methods. They are,

however, only valid for steady, compressible flow or unsteady incompressible

flow and cannot be used here.

In all of the axial singularity methods described (except for Revell), the

lifting part of the solution is given by the first-order slender body theory.

Various improvements have been suggested for determining the loading associated

with this distribution; however, the distribution itself is determined using

first-order theory.

The basic approach of slender body theory is to consider only the near

field effects of the axial singularities of the bodies on themselves. In the

near field the flow is both two-dimensional and r>as,-steady. When the body

surface lies close to the axis, the surface sees only L'e local axial singu-

larity distribution. Also, when the body surface lies close to the axis,

the characteristic wave length associated with the solution of the wave equa-

tion is long compared to the distance from the body axis to its surface; this

renders the problem quasi-steady. In all of the axial singularity methods

described, only one isolated : ,dy is considered. Any method developed would

have to properly generate a flow field away from the body surface where the

slender body assumptions are no longer valid (so that the mutual interference

of bodies can be accounted for).

A possible solution to this problem would be to use the exact three-

dimensional unsteady compressible flow solution for the effect of the axial

singularity system. The axial integral could be discretized (see Appendix B)

giving a piecewise constant singularity distribution. For such a distribution

the axis is divided up into a series of short axial elements. The singularity

17



strengths are held constant over each element but varied from element to

element. The boundary conditions would be made to hold along a line on the

surface of each of the bodies. Multiple bodies of arbitrary thickness should

be handled easily and the flow fields could be calculated easily.

Karmn used this approach to predict pressures and loads on airship hulls

at angle of attack. He used sources for the volume effect and doublets for

the crossflow lifting effect, K6rmgn's method was a velocity potential

app-oach (Appendix B, Eq. (B-2)). Other approaches could be used, however,

for instance, the pressure potential method given by Eq. (B-4) (Appendix B)

or the modified acceleration potential approach given by Eq.(B-15) (Appen-

dix B). For steady flow the modified acceleration potential method is the same

as the velocity potential method.

The unsteady pressure potential and modified acceleration potential

methods, discretized as described above, were implemented on the computer so

that they could be investigated. The formulas for the flow field due to a

short element of pressure potential doublet and modified acceleration potential

doublet are as fllows:

EF rsx I a 5M
rs = s 8 r - I/4s' Yr - nas  Zr-a s ' r' kr' M)

Pressure Potential (2.4-1)

1 ei wAs/2U

rs = e K(Xr- ls 'Yr

Ii-i s/2U

Modified Acceleration Potential (2.4-2)

The terms q., 2s and i/4s are the leading edge, trailing edge and

1/4-chord point of the sending axial element (indexed by the subscript s).

The index r indicates the receiving point. The boundary condition was

enforced at one point per element. For the pressure potential method this

point was located as follows:

U 18



Pressure Potential

x r = x3/4r (3/4-chord point of element)

Yr = Yd (2.4-3)

Zr= a + a r

where a is the radius at the point xr3/

Modified Acceleration Potential

xr = Xl/2r (mid-chord point of element)

Yr = )a (2.4-4)

Zr = a + a r

Unlike slender body theory each element affects all control points.

The pressure point doublet in steady flow is just an ordinary doublet line

of constant strength originating at the pressure point and terminating at

downstream infinity. The pressure point doublet in steady flow then is just

a semi-infinite doublet line.

-(,GN FRCI, POINITS

,, p

KARkMAN PRESSURE;
ELEMENT POINT

Sketch 2.4-1
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The two approaches previously outlined are essentially the same for

bodies that close (eliminating the vake). The only difference is that the

elements for the pressure doublet method are shifted aft by 1/4 of an element

length. This difference disappears with increasing numbers of elements. The

numerical results for either method were found to be almost identical for the

cases considered. Figure 1 shows one such case. A pointed body of parabolic

shape is made to pitch about its leading edge with a reduced frequency

(k r wL/U.) of 0.1. The calculated axial loading* is compared to that obtained

using the method of J. W. Miles 31. For this case the axis was divided up into

ten equal elements. A pressure doublet was placed on each element. lhe results

for a thickness ratio, (Rm x/L), of 0.1 are essentially in perfect agreement

with those of Miles. As the thickness increases, however, the calculated results

start to oscillate about the correct solution. F-- very thick bodies the

results are maningless. It has been found that the ratio of diameter to

element length plays an *important role in determining the accuracy of the

results. It has been found that the diameter should not be much greater than

2 to 4 times the element length. Von Karm~n used a diameter-to-element length

ratio of about 3, and thus obtained very satisfactory results for the airship

hulls he considered.

The reason for the failure of this method is not known. The supersonic

version of this method, as developed by Kgrm6n and Moore 37 and Tsien 38, seems

to work very well. It is suspected that the reason the supersonic method works

while the subsonic method runs into trouble, is the fact that in supersonic

flow, singularities or discontinuities are propagated to the body surface from

the axis while they are not in subsonic flow. It is obviously impossible to

produce a discontinuity in upwash on the body surface due to axial singularities

unless discontinuities can propagate to the surface of the body from the axis.

It is then obvious that in subsonic flow the closer the singularities are to

the surface (i.e., the more slender the body) the more accurate the solution

will be. It seems logical that there is a restricted family of upwash distri-

butions or boundary conditions that a subsonic axial singularity system can

satisfy on the surface of the body. The method by which one determines whether

a specific upwash boundary condition qualifies for a solution is not yet known.

*The assumption was made that the axial doublet strength could be used directly

to obtain the loading in the calculation.

20
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Kgrmgn 28 commented that the doublet distribution obtained by his method

agrees very well with the doublet distribution obtained using Munk's slender

body theory. He went on to suggest that very accurate solutions for the

pressure could be found if the exact non-linearized pressure formula were

used in conjunction with the doublet distribution obtained using either his

or Munk's theory.

Kgrm~n has thus suggested a solution to our problem. For an isolated

body, slender body theory should be used to determine the axial doublet

strength. Classical slender body theory does not account for interference

between the isolated body and lifting surfaces or other bodies. A solution

to this problem would be to keep the finite element or Kfrman approach for

intereference purposes but to uce slender body theo-y for the effect of a

body on itself. Stated In terms of influence coefficients this would mean

that slerder body theory should be used for the calculation of influence co-

efficients of the bodies on themselves, producing diagonal matrices, and

general three-dimensional wave equation solutions should be used for the

calculation of influence coefficients of the bodies on 1) lifting surfaces

and 2) other bodies. The interference matrices would be full matrices.

2.4.1 Axial Singularity Strength Using Slender Body Theory

Slender body theory states that the flow field very near the body is two-

dimensional and quasi-steady. At each longitudinal station the flow field

depends only on the local upwash (or sidewash ) and local body cross-sectional

shape. The axial singularity can then be determined from this two-dimensional

quasi-steady flow. For the case of a circular cross section a simple doublet

suffices to divert the flow around the cvoss section.

Ps = 2irwa2 (2.4-5)

where ao is the local radius and w is the local up- or sidewash.

For noncircular cross sections a simple doublet will not suffice. In gen-

eral, a multipole expansion would be required to simulate the cross section in

the far field. An alternative approach which requires no new basic singulari-

ties is to use doublets spaced laterally a distance from the axis. This produces

21



the same effect in the far Field as do higher order singularities. This

approach can be matched to the proper expansion through the second term

(quadrupole) to give the value of the distance of thu doublet from the origin.

An integrated doublet, i.e., two vortices, can also be used in the same

manner.

Consider the flow about a body of elliptic cross section whe-e a is the

semi-major axis and b0  is the semi-minor axis. The slender body theory

gives the near field solution as the two-dimensional flow about an ellipse.

Let F be the complex potential in the complex plane.

F -i w Z + i r2 w (2.4-6)z

where Z is the complex coordinate in the circle plane. The transformation

to the or ellipse plane ( = y + iz) is

r Z -K2/Z

y+iz

S(a 0 + bo)/2 (2.4-7)
00

K (a 0 + b2)/4

w = upwash at the cross section

In the usual procedure for inner-outer matching, the inner solution will be

expanded in terms of the outer variable. Basicallywhat is wanted is the

iultipole expansion of the inner or slender body solution. Expanding the

expression for F and gives:

F iw I - - K/

22



or retaining one term past the doublet gives:

oi + bo) 1  a0 + b o b0 -3 -8)

iw . + ao ( 2 + - ao (2.4

onset
flow doublet quadrupole

The appropriate doublet and quadrupole strengths, needed to represent the

elliptic cross section, are:

Ps D2Dw doublet

D2D = 2a 0(ao + b 0)/2 (2.4-9)

oq = ra 0  bl quadrupole

The flow about the ellipse is replaced by the flow about a doublet cf strengQth
and a quadrupole of strength p q* The approach is to replace the doubiet

and quadrupole with two doublets each spaced a distance d from the axis of

the cross section.

Two cases will be considered: 1) b > a, i.e., major axis smaller than

minor axis, and 2) a > b. For the first "ase, b > a, cwo doublets will be

used (see sketch 2.4-2). One doublet placed at +id and the other at -id.

Z

T
DOUBILETS

Fa

Sketch 2.4-2
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The complex potential due to these doublets is:

F = i w - + -id + i+id (2.4-10)

Expanding Equation (2.4-10) gives:

F = i w - + (1j2r)( - (pd2/2 'r 3 +". (2.4-11)

The term - psd2 is the quadrupole strength. Equating this to Pq given in

(2.2-4) gives an expression for d.

d= 0 -K (2.4-12)4

The second case, where the major axis is larger than the minor axis, a > b,

is now described. In this case an integrated doublet is used. This inte-

grated doublet gives two vortices; one positive vortex at d and one negative

vortex at d. Sketch 2.4-3 gives the geometry.

F~a dH

Sketch 2.4-3

The complex potential for the two vortices is:

F = iw +1- n (2.4-13)
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Expanding this equation gives:

F w i + +(ii ,d I + (idr) -3 + . (4-4

Equating Equations (2.4-14) and (2.4-8) gives:

2dr Ps

P = D2D (2.4-15)

D2D = 21 ao(a o + bo)/2

d 13 \J 0 b f3 K

Equations (2.4-15), (2.4-12) and (2.4-9) give the appropriate doublet
strength or vortex strength and spacing d to properly represent the doublet

and quadrupole strengths of the elliptic cross section. The far field may

now be determined by using the exact wave equation solution for these singu-

larities coupled with the appropriate singularity strength and spacing as

derived above.

The multipole expansions used are terminated after the quadrupole. Thus

the cross section will not exactly be an ellipse. Specifically, the ratio

a/b or b/a may not exactly be the aspect ratio of the body. Figures 2 and 3
give examples of body shapes obtained using two-doublets and two vortices.

In many instances it is not important to maintain an elliptic cross section
exactly since the ellipse itself is an approximation to body shapes with

unequal semi-major and semi-minor axes. The main idea is to match the ratio

of a/b or b/a of the ellipse or approximate ellipse to the physical air-

craft cross section. In some instances the body cross-sectional shapes

shown in Figures 2 and 3 are more representative of the physical shape

than is the ellipse. In any :ase it may be more important to correctly

associate the values of doublet strength and spacing d with the ratio a/b

or b/a for the approximate ellipse.
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2.4.2 Far Field Representation

As stated in the foregoing discussion, exact formulas are to be used for

the effect of the body on lifting surfaces and other bodies. The cross-

sectional area and shape usually varies along the length of practical bodies.

Thus, the strength and spacing d must vary along the length of a body.

Numerically, it seems reasonable to assume that ti;e cross section is piecewise

constant over short lengths. The body is then divic d up into short elements

(see sketch 2.4-4). The two-dimensional doublet becomes a line doublet the

length of the element. One line doublet lies at n = +d and one at T, = -d.

Each line doublet or vortex, will, in general, lie at a different value of d.

The exact solution for a constant strength doublet has not been derived. How-

ever, an expression for a doublet varying like e-i  ( - c)'u over the ele-

ment (from 'l to E,2 where c (l + C2)1 2 ) has been derived in Appendix B.

This is the modified acceleration potential method. The influence function at

a field point then is the sum of two expressions, one for the doublet element

lying at ) fl a + d and one for the doublet elem,'nt lying at n :a - d.

E 1 e . Wd)s12U
rs [K(Xr is ' Yr - (na5 -d), Zr -a s ' "

+ I,(x r - l ' Yr - ( a
s  + ds), Zr - '"

s K(x r  yI a

-ei';s/2U [K(Xr 2s ' Yr- (nas - ds), zr - ra .

+ K(Xr -) 2s Yr -" has + ds), Zr - a

(2.4-16)

The term K is the c'lasic kernel of lifting surface theory and is derived

in Appendix A. The terms K tI and o 2 are the element end points. The

term E rs gives the velocety at the point xr, Yrs Zr normal to a surface

of dihedral Yr due to the doublet line segment of unit doublet strength!'

If the short segment of line doublets is integrated laterally, as outlined

in AppendiA B, then the result is an unsteady trapezoidal vortex see Sketch

2.4.5.

1For convenience the !ukdified doublet (U. -. ',)is used in this analysis, see
Eqs. 2.4-4?6, -27.
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d f /2U

Ers S K(Xr- i ' y- n'i .. )

-d s

- wAE/2U K(xr- 2s Y-n ...) d, (2.4-17)

The division by 2d appearing in Eq. (2.4-17) reduces the quadrilateral
vortex strength per unit area to a doublet strength (modified) per unit length.

Expanding K into its three component parts, as given by Eq. (2.3-2),

E r (S) + E) + E(2) (2.4-18)Ers : 'rs rs -s t . -8

d

IE(s) -6 -- (S x ) y - s "")T 1/r 2 d

-d

1 nJ x 2' y- n .)T ,, d (2.4-,9)
-d

di xA/2Ud._e_ Kl(x- 1 , ... )-K (x- 1 , ... )
E(1) =T f T . x 2-d w r2

4r j

e cK1(x - E2' " + K 'S)(x, '"!

/,2.4-20)

d i wAE . K2(x -El, '' )  KS)(x -El) "''2SE(2) I6-' Td' 2f2

.- i w U / 2 U fe co K2x 2 " '  +  K s) (x _- 2 ""C

(2.4-21)
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where the subscripts r and s have been dropped in Eq. (2.4-19) through

(2.4-21) for convenience. The subscript r is attached to the receiving

point quantities Xr' Yr' Zr) Yr' etc., whereas the sending point subscript

s is attached to the sending element quantities, AS S I ' 12 , ds, etc.

The steady term E s)  is associated with a trapezoidal voriex o constant

strength located around the edge of the element and can be determined using

the law of Biot and Savart. The second and third terms, E(1) and E(2) can

be evaluated in a manner analogous to that for D" ) and D(2) given in

Eqs. (2.3-5) and (2.3-6).

=(1) d A 0 2  dn (2.4-22)
TG--d f 1

d

T2 1 A 2n 2 B+ + C2
r4-Tf 2 dn (2.4-23)

-d r

AI1,j + Bin 4. C1 = Numerator of (2.4-20)

A2n 2+ B2n + C? = Numerator of (2.4-21)

This formulatiop of E( I) and E(2)  becomes very inaccurate when r = 0 and

the receiving point is downstrcam of the element. The I/r 2  and I/r 4

singularities exist only on the length of the element; no 3uch singularities

exist downstream. These singularities are eliminated in the numerator in a

limiting process. However, when the numerator is approximated by a parabola

the singuaerities are not cancelled properly. A way around this difficulty

is to fic the entire integral with parabolas.

d

E'i) (A6d + B + C)dn 1 -- A d + 2dC 2.4-24)
3n +6~ C3 = 3-d ~ 3 3 C31)24-4

-d

E(2)= f + + C4)dn = + 2dC4  (2.4-25)

-d
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A3
n2 + B3n + C3 = Integraid of (2.4-20)

A4
n2 + B4O + C4 = Integrand of (2.4-21)

The coeffi ........ 3 B3, C3, A4, B4, 04 are calculated by evaluating the

integrands at th,,, points: n = -d, 0, d, that is, the !eft edge, center

and right edge of the element. When a fiei point lies close to one of these

locations (downstream of the element) then r becomes very siiall and accuracy

can be lost in the calculation. To avoid this difficulty, a two-point formula

is used when r < O.Old. The offending point is simply eliminated from the

calculation.

B3q + C3 = Integrand of (2.4-20)

B4n + C4 = Integrand of (2.4-21)

If a field point lies close te an element edge, for instance, B and C are

determined using the value of the integrand as evaluated at the other edge

and the center. This simplification of the integration scheme gives rise to

irregularities in the normalwash flow field of the trapezoidal vortex in d

region downstream of the element. These irregularities do not, however,

invalidate the calculation. Problems involving 1/r2  and I/r4 could be

eliminated if the velocity potential approach were taken and new formulas

developed for the line and area integrals. The general form of these inte-

grals are given in Appendix B,Eqs. (B-h) and (B-2). Details of the integra-

tion over a small element have not yet been developed but no problems dre
envisioned.

2.4.3 Matrix Representation

In the last two subsections, expressions have been derived for the singu-

larity strengths and far field effects of short element lengths. The total

effect, 6w, is obtained by summing the effects of all elements. In matrix

form

-s = 2.0 D2Dw (2.4-26)

{Aw} = [E(z) ] {z E(y)] {s(Y)} (2.4-27)
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where Aw is the flow field caused by the bodies. Specifically, Lw is the
normalwash at: 1) lifting surface elements, and 2) body interference elements

(these will be discussed later) that lie off the surface of the sending body.

The superscripts z and y indicate tha doublet orientation in response
to velocities in the z- ,nd y-directions. Various expressions are used for

E(z) and E")) depending Gn the ratio a/b of the cross section and
depending on the location of the receiving point. The far field formulas

(2.4-16) and (2.4-17) are used when the receiving points fall on lifting
surfaces and on bodies other than the sending body. The effect of a body on

itself is determined simply by the inverse of the expression for 's given

in Eq. (2.4-26). This means that the value of w used as a boundary condi-

tion is obtained as the effect of the body on itself. The final bounaary
condition on lifting surfaces and interference body elements is the difference

of w - Aw. The result of this difference is zero for interference body
elements lying on the sending body. Rather than go through this operation,
the term w (excluding the effect of other slender bodies) is 6et to zero
there. Thus, the effect uf a body on itself is set to zero.

E(z) = E"y) = 0 wnen receiving elements lie on sending body
(2.4-28)

w = 0 for interference body elements on the sending body

when b/a > 1

E( z )  Equation (2.4-16) with = 0 (2.4-29)

E( y ) = Equation (2.4-17) with = -90*

wnen b/a < 1

E z = Equation (2.4-17) with ys = 0 (2.4-30)

E(y) = Equation (2.4-16) with ys = -900

The receiving points for lifting surfaces are, as usual, the 3/4-chord

point centered spanwise. The receiving points for body interference elements

are on the receiving body axis Yr = nar' Zr = nar and centered longitudinally.
For geometrical purposes, bodies are represented by constant section tubes to

which lifting surfaces are attached. In some instances (e.g., a tail) this
idealization moves the surface so that the proper Aw is not calculated. A

provision has been made to shift surfaces (receiving points) back to their

proper position.
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~2.5 Interference

The first step in the determination of interference has been taken in

section 2.4. Specifically, the incremental normalwash bw due to the

isolated bodies has been found, Eq. (2.4-23). The resulting normalwash is

wT = w - Aw (2.5-1)

and is known at all lifting surfaces and bodies. This may be viewed as a new

normalwash distribution to be satisfied by the lifting surf, ces and bodies and

need not be considered further. Simply replace w with wT.

The basic approach to be taken in the solution of this new modified

boundary value problem is to: 1) generate an approximate Green's function for

lifting surfaces in the presence of several bodies, and 2) generate a residual

flow used to render the Green's function exact. In simpler terms, an image

system is generated within each body to divert the flow around that body when

it is in the presence of the lifting surface. The image system is not

completely effective in doing this, howevey, and a residual flow must be added.

This residual potential is a simple axial singularity distribution, very similar

to the axial system discussed in section 2.4.

2.5.1 The Method of Images

The method of images is not new. Lennertz3 9 in 1927 and later Koeing 40 were

two of the first to use the method for steady flow. The basic idea of the

method is to match each singularity external to the body with one internal to

the body at the "image" point. The strength of tne internal or image singu-

iarity is directly related to that of the external singularity strength so that

no new unknown distributions are introduced. The image singularity exists to

negate the flow through the body surface generated by the external singularity.

The method ,f inages has been put to use in different ways. In most of

the ioproaches the residual flow is ignored. Exceptions are Re.horst 4' and

Wu and Talmadge4 2 who generated complicated expressions for the residual flow

fields.
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Zlotnick and Robinson43 used images of unswept horseshoe vortices that
are placed along the 1/4-chord point of a swept wing. The calculaticn of

induced velocity due to a particular bound horseshoe vortex includes the
image as well. [he resulting integral equation for the span load is solved

using a discretized Weissinger approach. Some attempts were made to account

for the effect of body thickness ratio on the lift of the body.

Gray aid Schenk44 used a more approximate method. The basic approach
was to: 1) determine the span load excluding the fuselage; 2) form the image

system of the known loading; 3) calculate the resultant upwash distribution
generated by the image system on the wing, and 4) repeat the span load calcu-

lation using the new upwash distribution.

Multhopp's method45 and extensions of it by Weber, Uirby and Kettel46

require a mapping of theftselage to a vertical or horizontal slit. The fuse-
lage is effectively reduced to either a plane of symmetry or a segment of the
lifting surface. In either case the resulting simplified problem can be

solved using standard methods. Such an approach ignores entirely the residual
flow field. This method cannot be extended much further and generalization to

more complicated configurations seems unlikely.

Giesing8 recently has incorporated the method of images into the lifting

surface theory. All horseshoe vortices, both external and image, possess
sweer. Non-midplane configurations are considered. In addition, the residual
potential is accounted for using an axial doublet distribution. The approach

described in the present report is an extension of this method. Spancler and
Mendenhaii 2l have developed a similar method for more general configurations.

Extensions of the method of Gray and Schenk have recently been made.

Borland 23 has extended the method to fuselage cross sections of elliptic shape.

Chou 24 has generalized the image procedure to include nacelles. Also, an
attempt was made to generalize the image approach to account for longitudinal

variations in cross-sectional area.

Other approaches have been taken into account for wing-fuselage interfer-

ence. For instance, slender body theory has been generalized, refined and
!extended to determine the flow about very slender wing-body combinations. No

attempt will be made to review all of the slender configuration approaches.
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Instead, reference will be made to an excellent survey paper written by

Lawrence and Flax4 7 . This approach has not been considered for the present

method since more than just slender configurations are considered.

2.S.2 The Method of..Images for Circular Cross-Sections

The image point and singularity strength are determined using two-

dimensional theory. Appendix C shows how the Thcmpson Circle Theorem is

appl 4ed to obtain the image point location and strengths for three types of

external singularities in the presence of a body of circular cross section.

The three types of singularities are: 1) the vortex, 2) the source, and 3)

the doublet. The results are given in Appendix C in Equations (C-2), (C-3)

and (C-5), respectively. or an external vortex of strength r located at

n, , the image strength rI and location r'l, I are given as:

rI = -F

nl (a 2/2 )n0 (2.5-2)

a= 2a/p2

where

2 2 +2

Here it is assumed that the axis of the circular body is at the origin of

coordinates. Sketch (2.5-1) gives a graphical description of these results.

IMAGE

EXTERNAL

VORT EX

_Y A
i Sketch 2.5-1
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For :.E source of strength a, there are two images

oIl =

ni = (a /p )n

a 2 (a2/p2 )
1 (2.5-3)

T

12

n2 =0

2 02

For a doublet of strength u(y ) and j(z) in the y and z directions,

respectively, the image strengths and positions are given by:

(y) -a 2 [(y)(n2- 2) + (z)2 ,]

p

(z) a9[(z).2 _ 2) + (Y)2 2n]
P (2.5-4)

III =(a 2/p 2)n

I (a2/p
2

The location of the image in the x-directio is identical with that of the

external singularity. That is, the image singularity matches tile external

singularity both in length and position in the longitudinal direction.

The use of a multipole expansion or singularity distribution along the

axis of the body requires that the surface boundary condition (the residual

normalwash generated by the external singularity and its image) must be finite

an, continuous on the body surface. One of the basic requirements of the image

then is to render the boundary condition regular even when the external sirgu-

larity lies very close to the body surface. It can be shown that such is the

case. In the limit as the singularity approaches the surface from the outside,
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the image singularity approaches the surface from the inside. In the limit the

sirngular:'Ly and its image render that portion of the body siface lying between

them a plane of symmetry. The flow normal to the body surface in that region

is then zero. This can be shown from the expression for the image coordinates

hi' I" Consider the case = 0 and n = a + c. Equation (2.5-4) then gives:

nI  a - C + 0(E )

(y) V (Y) + O(E2

(z) (z) 0(2
= +()

when
n= a+ c

This equation shows that in the limit as c 0 the surface n = a is a

symmetry plane. This is a two-dimensional result. It can be shown, however,

that it also holds in three-dimensions.

As a summary of the above discussion it may be stated that:

1. The image singularity furnishes the major part of the disturbance

flow necessary to satisfy the boundary condition on a body in the

presence of an external singularity.

2. The ,oundary conditions for the residual potential (needed in

addition to the image potential) is everywhere regular even when the

external singularity approaches the body surface.

2.5.3 The Method of Images for Noncircular Cross Sections

Borland 23 has developed an image system for elliptic cross sections. The

image point is obtained by transforming the circle image points. The transfor-

mation is the one that carries the circle to the ellipse. The image coordinates

given in complex form are:

+ r 4 + (1/4)K2 (A + iB)2  (2.5-5)
( I/2)-r (A + iB)
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F7

where

A + iB -i + - - 4K2

7 (a + b)/2

K2  a2 _ b
2

The terms a and b are the semi-majoi and semi-minor axes, respectively.

This formula is not valid for singularities lying outside of the region

bounded by the ellipse

2 2+ n :+

(2/ 2 /-22 2K 2IK/ 2)2
(i21/KI - K2IKI/2) 2  ( 21IKi - K2IKII 2)

since the image point then lies on the wrong Riemann sheet. This is not a

serious deficiency sinice the image system is intended mainly to eliminate the

nonuniform flow field associated with singularities that lie close to the body

surface. Under this circumstance the behavior of the image is identical to that

described in the last subsection. In a small region near the singularit the

surface of the body becomes a plane of symmetry 4n the limit as the singularity

approaches the surface.

As anticipated, the image approach is not as effective for noncicular

cross section as it is for circular cross section. The image does not render

the ellipse a streamline even in the two-dimensional cross section plane. The

residual potential then will be larger for noncircular cross sections.

A second method of determining the image point for noncircular cross

sections is given in Appendix C. The method is basec: on the concept of local

center and radius of curvature. If the radius and center of curvature are

known on that part of the body cross section which lies closest to the

external singularity, then an image point may be found using the circle produced

by that center and radius. The image is calculated using the formulas for the

circular cross section where the circle center and radius vary depending on the

pusition of the external singularity relative to the cross section. Sketch C-2

in Appendix C gives an illustration.
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eteTihe formulas for the radius and center of curvature have bean develioped

for an elliptic cross section in Appendix C. If - is the vector from the

center of the ellipse to the center of curvature and T is the local radius
o1 curvature, then:

S a Cos30 +  (b2 _ ) sin 3a (2.5-6)

2 2e + b2 2,)3/2
a (a sin ab Cos o) (2.5-7)

where the parampter 0 is related to y and z as follows:

y = a cos e

z = b sin e

The unit vectors j and k are in the y- and z-directions, respectively.

Sketch 2.5-2 presents a plot of the locus of " which is the evolute of the

ellipse and a plot of a for an ellipse of b/a ratio of 0.75.

As the ratio b/a is reduced, the center of curvature eventually passes

outside of the ellipse, thus allowing the possibility that the image may pass

outside of the ellipse. This method,like the last, works best for singular-

ities that lie close to the body. The determination of which method is best -

either BorL.nd's or the method just described - remains to be seen. In any

case, it is anticipated that there will be restrictions on the ratio b/a and

on the position of tne externdl singularities as far as images are concerned.

The present method uses the local center of curvature approach with a

further restriction: the image point must lie in The same quadrant as the

external singularity. If it does not, it is ignored. This restriction

eliminate3 the overlapping of image sheets within the body. That part of the

image surface indicated by a dashed line in the example of Sketch 2.5-3 is

the part that is ignored.
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#2 Quad.-ant l

~WING

#3 #4

Sketch 2.5-3

2.5.4 The Method of Images for Unsteady Flow

The method of images can be taken over into the unsteady regime essentially

unchanged. Attempts to refine the image to account fcr unsteady effects have

led to the conclusion that unsteady effects can be lumped into the residual

potential.

Consider the cross section given in Sketch 2.5-4. Attempts to refine the

image system so that unsteady effects are accounted for include:

1. An adjustment of the strength and location of the image such that

the boundary conditions at A, B and C are satisfied in unsteady

flow;
2. Adjustment of the strength of a second doublet located at "0" and

the position of the image doublet such that the boundary conditions

at A, B and C are satisfied in unsteady flov; and

3. Adjustment of the strength of the second doublet (at "0") and the
strength of the image doublet so that the boundary conditions at
A, B and C are satisfied in unsteady flow.
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Sketch 2.5-4

All of the approaches are based on the assumption that the similarity

variable k= kr rr is small. Consistent with this approximation is the use

of Laschka's simplified expression48 for the kernel downstream of a pressure
doublet. (The expression is valid if (Br/(x -- ) is small.) This expres.

sion is expanded in terais of T and terms up to F 2 I T and T2 a 'e

retained. In all of the attempts outlined, the changes in strength a;,u posi-

tion of the image are small (proportional to T2 In I and 72) so that pro-

ducts of high-order terms are ignored.

The basic idea of the first attempt is to adjust the image strength so

that the boundary condition at A (and by symmetry at C) is satisfied for

any image position. The boundary condition at A and C req,',,s that there

be a stagnation point at A and C. The next step is to calculate the value

of the stream function on the body surface at A and C. The image position

is then adjusted so that the value of the stream function at B watches the

value calculated at A and C.

It was found that the boundary condition at A and C uould not be

maintained when the external and image singularities approached the circular

surface.

41



The second attempt was mednt to correct this condition. Ins'tad of using

the image strength to satisfy the boundary condition at A and C, a second

doublet was introduced at the origin to do so. Again the stream function was

calculated at A and C and the image location adjusted until the strPam

function at B matched that calculated at A. This method works except when

the external singularity is at a large distance from the body. This is not a

serious drawback since the basic expansion in terms of kr r/ fails there

also. The basic drawback with this method as with the first one is that an

adjustment of distance is involved. The image position is adjusted. This

adjustment, however, must vary in the longitudinal direction; the correction

to the position of the image varies like e- wx/U. Changing the position

of the image with x is practical only when the frequency is small. This

type of correction is complicated and not worth the effort.

The third attempt was directed toward the development of a correction that

does not involve adjusLinent of any distance. The idea is to adjust the strength

of the doublet at the origin for any strength image so that the boundary condi-
tion at A and C is satisfied. The st -ngth of the image was then adjusted

until the stream function at B was equal to that calculated at A and C.

This approach has no real deficiencies except that the status of the boundary

condition at D and in between A, B, C, and D is unknown. Also, this

T;e'hod like the second method fails for singularities located at large distances

from the body.

The conclusions drawn after analyzing the above thec.2 attempts to correct
the irrage is that it is better to lumD unsteady effects into the residual

potential. The last two attempts described actually use a correction flow

(the new doublet at the origin) to correct for unsteadiness. Rather than

generate a residual solution ror each singularity and image separately, it seems

logical to generate the residual potential only once. The description of the

residual potential is given in section 2.5.6.

2.5.5 Formation of tne Influence Matrix with Images

Each lifting slirface element has its imaqe. For each unsteady horseshoe

vortex exterior t tne body, tfere may be an image unsteady horseshoe vortex

vithin the o .e Bexpresion for the noinalwash influence matrix for
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elements exterior to the body may be rewritten from Eq. (2.3-1) as

e

D = '. K dn (2.5-8)

-e

The influence matrix from the image element is:

e
D = !-ef KI dn (2.5-9)

I -e,

The required image quantities are determined from the edge locations of the

image element. If nl,'l are the coordinates of the inboard edge of the

exterior surface element, and n2,2 are the outboard coordinates,and na

and ra are the coordinates of the local center of curvature, then the

corresponding image locations are:

- 2
i n a1 =H + 7 (nl nHa)

Pl (2.5-10)

-2
= - + - ( I - a )

I PI

P 2 (nil- na ) 2  + ( 1 T-) 2

Similarly, for nI  and 12. These expressions are slightly different from

those of (2.5-2) ecau.e it is no longer assumed that the body on c is at

the origin.

el Vn2 1)2 (¢2_ 11"

2

cos YI 2 el  (2.5-11)

( 2 1 ll

sin yI 2 e
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The sweep angle of the image element, xI is given by

sin xI - A9.

(2.5-12)

eI
c o s + _ _ _ 2 + e_

Each body in the flow may possess an image of the external lifting surface

image. For the sake of efficiency, it is not required that each body have a complete

image system. That is, every lifting surface element need not have an image

in every body. Only those bodies that lie close to the lifting surface element

are required to possess an image of the element. Also, if a lifting surface

element lies out of the range of the body longitudinally, then no image

exists. Taking into account all image elements, the normaiwash becCmes:

{wR} [D] {CP}

NAB~s) 
(2.5-13)

D D+ D I

b=l

where the superscript b ranges over all bodies that must have images associ-

ated with the element. The velocity wR is the sum of the velocity due to

lifting surface elements, ws, and their images, wI.

w R = ws + wI

It is convenient at this point to include the effects of symmetry and

ground effect. The effect of symmetry is to introduce a system of lifting

surface elements, plus their images, on the left-hand side of the y = 0

plane. The n-coordinates of the sending elements are changed from n to

-n . Similarly, the dihedral angle changes from ys to -Ys. Elements

lying on the symmetry plane (in the y = 0 plane) have no image. The effect

of the ground plane is to introduce a system of lifting surface elements,

plus images, below the z = 0 plane. The c-coordinates of the sending
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elements are changed from t to -. The dihedral angle changes from ys

to -Y The interaction of ground effect and symmetry is to change n to

-ni, to - and leave ys unchanged.

= sD(n,,yS) + s ) + sD(n,-C,-y5 ) + d )

Note that the effect of images is included in Eq. (2.5-13) because of its

inclusion in D. Eq. (2.5-13) may be rewritten As

{wR} ( [ AC p (2.5-14)

2.5.6 The Residual Interference Flow

The image singularity, of course, is not completely effective in

diverting the flow, generated by the external singularity, around the body.

The reason is that two-dimensional theory was used to develop the image. It

is surprising, however, how well it does work. Wu and Talmadge 42 have

attempted to solve the full three-dimensional problem of a semi-infinite live

doublet in the presence of a shape that has a circular cross section and is

infinite in length*. Their approach is to break the potential into two parts:

Sl due to a doublet and its image (as discussed above) and 2 an incre-

mental potential used to render the solution exact. The basic approach is to

calculate the flow normal to the surface as generated by the singularity and

its image, i.e., as generated by l1 Then a Fourier-Bessel series is used

to negate this residual normalwash. Basically, what this series represents is

a distribution of singularities along the axis of the b3dy. Near the axis the

Bessel function can be approximated by the functions 1/rn. Thus, the series

sum over n represents a wave equation multipole expansion. Wu and Taimadge

have shown that the residual upwash and thus the incremental potential is

everywhere small. The variation with x is given as:

lim 2 o(x)
x O

lim 4 2 O(x- )
X -), 0

*Wu and Talmadge actually consider a jpt And not a body. However, the basic

solution for the jet and body are very similar.
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Although the image system makes the major contribution towards satisfying the

body boundary coidition, there are still some effects not accounted for.

These effects can be classified loosely as follows: 1) effects of bound

vorticity, 2) effects of noncircular cross sections, and 3) effects of

unsteadiness.

These effects produce residual velocities normal to the body surface.

These residual velocities, however, are free from singularities since it was

onc of the main requirements of the image system to eliminate such

singularities. Since no singularities exist, a solution of the axial singu-

larity type may be used. Again, slender body theory will be used to find the

strength of the axial singularity required to eliminate the residual velocity

normal to the body surface. In order to use the axial singularity system, an

effective up-or sidewash velocity must be determined from the nonuniform

residual onset flow obtained from the lifting surface and its image surface.

Slender body theory allows two-dimensional quasi-steady methods to be employed

to find this effective velocity. The basic problem is shown in Sketch 2.5-5.

ELLIPSE PLANE CIRCLE PLANE

z

a a

¢r

0 o W

Sketch 2.5-5
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The bdsic steps in the solution are outlined as follows:

1. Transform the normal velocity boundary conditions, which are caused

by ncnuniform residual onset flow, to the circle plane;

2. Solve the potential flow problem in the circle plan~e;

3. Transform the solution back to the ellipse plane;

4. Knowing the doublet strength, fid the effective velocity necessary to

produce it.

The normal component of the residual velocity, w, is

=n i -J wR  + wR ( (2.5-15)

where wR is the residual onset flow. This residual onset flow is caused by

the lifting surface elements plus their images inside the body (or bodies).

That is

wR = ws + wI

For an ellipse

= -b cos 0 + ka sino

b cos-e + a sine

The normal velocity transformed into the circle plane, W, is

;w: w 1 + b/a V -[1 - (b/a )2] c'os (2.5-16)

Tn the circle plane this normal velocity may be negated by a multipole expan-

sion centered on the body axis. In the circle plane the multipoles are

designated by V
- -(y) _(z)

-W 1 . + (2.5-17)

2n=1r r.)

where the subscript v indicates the order of the singularity considered.

For example, v = 1 indicates a doublet, etc. If both sides of Eq. (2.5-17)
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are multiplied by cos vo and integrated from o 0 27 the result is:

w~ cos v ede = 1 v- /r)1 + (2.5-18)f 2 v
0 V=l

Similarly, if cos 7o is replaced with sin -o, the result is

27r 00

W sin V Z -zo~ (2.5-19)
0 V=l

Eqs. (2.5-18,-19) give the values of the doublet, quadrupole, etc., strengths

to satisfy the normal velocity boundary conditions. These singularity strenqths

may be transfo-med back to give the appropriate singularities in the ellipse

plane. Formulas developed previously (Section 2.4) for the far field properly

represent the multipole expansion through the second term V = 2. The distance

d is selected such that the proper quadripole strength is generated. In

Section 2.4 the distance d was a function of the cross section only, i.e.,

b/a, however, here d is a function of both cross section and nonuniformity

in the residual onset flow field. It is impractical to use an influence

formula that is a function of onset flow, thus the effect of nonuniformity on

the value of d will be ignored. Only the cross-sectional shape will be used

to determine d. Since d has been determined previously,only the doublets

need be considered in Eqs. (2.5-18, -19). The doublet transforms unchanged

from the circle plane to the ellipse plane. After substituting m for w

(Eq. (2.5-16)),the expressions for P(Y) and i(z) (remember u = 2) become:

27r

=2a 2(l + b/a) f w cos o Vl - [I -(b/a) 2] cos2o do (2.5-20)

0

27r

=2a2(1 + b/a)f w sin o l - [I - (b/a) 2] cos2a do (2.5-21)

0

Numerically,the integrals are replaced by sums in the present method. These

integrals may be translated into an equivalent velocity as follows:
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S(Y) = D2D(Y)w(Y) (2.5-22)

(z) = D2D(Z)w(Z) (2.5-23)

where w(y ) is simply the right-hand-side of Eq. (2.5-20) divided by D2D (y ).
(z)

The term wtz) may be found in a similar manner. The superscripts (y) and (z)

on the term D2D are to indicate that there is a difference between them

for noncircular cross sections.

D2D(z) = 2. a (a + b ) (2.5-24)

D2D (y ) = 2,, b (a + b ) (2.5-25)

In Eqs. (2.5-20) and (2.5-21) the terms a and b are those used for the

image calculation. That is, they are constant for the entire cross section.

Thus, the velocity normal to the surface is calculated on the constant section

tube used for the images. The values of a and b0  found in Eqs. (2.5-24)

and (2.5-25) vary along the length of the body. When Eqs. (2.5-24) and (2.5-25)

are placed into Eqs. (2.5-22, -23) and then into (2.5-20, -21), the results

are:

21,

a(Y) - a+ + b) f w cosode (2.5-26)

27r

w(z) _ 1 a(a b) j f w sinode (2.5-27)7ao (ao0 + b0) f

f 41 -l - (b!a)2] cos20

The assumption that is made for the calculation is that the image cross

section approximates the actual one. In order to more closely transfer this

onset flow to the actual surface, the val' e of a(a + b)/a 0(a0 + b ) is set

to unity. The velocity normal to the su'face of the ellipse due to lifting

surface elements and images is calculated using D and DI. If the sendin

element is located along a body axis and not on a lifting surface, then, EGy)

and E(z) are used. The dihedral angle at the receiving point to be used is the
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local surtace slope on the elliptic cross section. The integrals are evaluated
by calculating w at various points around the circumference of the cross section

No
w(Y) w cos o f A6 (2.5-28)

V:l

A similar expression exists for w(z). The subscript v indicate" that the
receiving point is located at e as follows:

Y = na + a cos 0

z = a + b sin 0

COS = si (2.5-29)

Yr -b

sin y = -cos a
rV

p = Vb 2 cs0 + a2 sin20

Eqs. (2.5-26, -27), are applied to the influence matrix relating the normalwash
due to a lifting surface element and its image at the body surface.

As it stands in Eq. (2.5-14) {wR} is partitioned into two parts: 1)

the normalwash at the lifting surface elements, wR, and 2) the normalwash

at the body surface at various meridian angles (6), w( )

= WR = [/o~( * 5-30)

In order to obtain the average z- and y-velocities at the bodies Eqs. (2.5-26,-27)

must be applied

2TT
(z) f Df cos ode (2.5-31)

0

2T

(y) : f 50f sin )do (2.5-32)
0
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Then the matrix {ws} becomes:

fW I~ =~ z = (z) C 2. 5-33)

It is important to notice that the cross-sectional shape (and size) used in the

determination of the effective up- and sidewash (Eqs. (2.5-31, -32)) must be

the same as that used to determine the images. This cross section is constant

for the entire body length. The effective velocity obtained from these

calculations, however, is applied to the actual body cross-sectional shape and

size through the use of the local influence function C2D and the setting of
the term a(a + b)/a (a + b ) to unity.

Thus far the effect of lifting surface elements and their images on bodies

has been considered. Attention is now turned to the interference effects of
bodies on all parts of the configuration, i.e., other bodies and lifting

surfaces.

The residual interference flow is to be generated using the same singular-
ities as those used for the isolated body (section 2.4, Eqs. (2.4-16, -17)).

The only differences are: 1) that the distribution of elements will be differ-

ent, 2) the normalwash is determined at points on the cross-sectional surface

rather than at the body axis (even though the results are applied to the exact

surface).

The distribution of elements for interference could be identical to that

for the isolated body for simplicity. However, this is inefficient. The

singularity strengths for the isolated body are known and do not add to the
number of unknowns in the problem as do the interference elements. For this

reason a generous number of elements may be allocated, for the isolated body,

to properly describe the body radius distribution, the greatest variation of

which is near the leading and trailing edges. The greatest variation in the

residual flow may be elsewhere, specifically near the body/lifting-surface

intersection.
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t he body radius must equal the constant value used in the image calcula-

tion. The reason is that the image singularity surfaces exist within this

constant section tube. Thus, two idealizatiors for the body are used: 1) tc
generate the flow field of the isolated body, the exact radius distribution is

used, and 2) to account for interference, a tube of constant cross section is

used along with the exact body shape.

The residual flow field due to lifti'ig surfaces and images has nonuniform-
ities across the body surface. Thus, the averaging of this nonuniform velocity,

given by Eqs. (2.5-26, -27) is required. For the effect of bodies on other

bodies, however, the nonuniformities are small and the normalwash may be

evaluated on the axis.

The influence matrix relating the normalwash at a field point due to an
interference body element is formally the same as that for an isolated body

except that the values of uy) P (Z) are not known.n n

{wn : [ ~z)] {(z)} + [E(y)] {(y) 1  (2.5-34)

E(z) = E(y) = 0 when the receiving element lies on the sending bodyrs rs
except when r = s

E(z) = D2D(z) when r = srs
(2.5-35)

E(y ) = D2D (y when r = srs

b/a > 1

Er = Eq. (2.4-16) with ys = 0

E(Y) = Eq. (2.4-17) with ys = -900 (2.5-36)

rs =E.(.-7 ih ~ O

b/a < 1

E (Z)= Eq. (2.4-17) with ys 0rs (2 .5-37)

E(y ) = Eq. (2.4-16) O;ith ys = "900
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The receiving points for the lifting surface elements are the 3/4-chord

points. The receiving points for the bodies are on the body axis at yr na
ra

Zr = Car and centored longitudinally on the element.

In summary then, the residual interference is handled in the following

manner:

1. The up- or sidewash at bodies due to lifting surfaces and their

images is determined using an averaging technique on the normalwash
at the body surface. The body surface used for this purpose is a

constant cross-section tube.

2. Interference body elements are used to negate the up- rnd sidewash

given in (1) and also the up- and sidewash generated by other bodies.

The interference body elements are distributed differently from

isolated or slender body elements. This is done to reduce the

number of unknowns in the problem and to place interference elements

where they are most needed.

2.5.7 The Use of Surface Singularities for the Residual Interference Flow

In the last section axial singularities were used for the determination
of the residual potential. An alternate method is presented here. Specifically,

the normalwash boundary condition can be satisfied using a distribution of

either unsteady horseshoe vortices or quadrilate-ral vortices on the body

surface. In Part I of this report, unsteady horseshoe vortices were used

on the body surface to account for all of the body/lifting-surface interference.
(Slender body elements were used to determine 6w.) For the present method,

however, surface singularities on the body surface may be used to account only

for the well-behaved residual flow. Thus, both an image system and surface

singalarities can be used. The number of elements on the body surface need

not be as large as for the method of Part I since the residual flow is well

behaved. However, the introduction of surface singularities greatly increases

the number of unknowns in the problem and the computational effort. It is

anticipated that this method will be used only for difficult configurations or

if a very high degree of accuracy is required. It may also be desirable to

have such an approach for cross-checking purposes.
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The normalwash, WT, to lifting surface elements lying on body surfaces

is determined in the same manner as the wT for axial interference elements.

The only difference is that the velocity normal to the surface elements is

determined instead of z- and y-wash at the body axis. For a single body, wT

at these surfaces is zero since it is assumed that the slender body axial

distribution has diverted the onset flow around the body surface (exceDt for

interference flow). If two or more bodies exist (including symmetry and

ground effect bodies), then one body may induce a nonzero wT on aiiother

body.

Eventually it may be desirable to use quadrilateral vortices that are

inclined to the flow field so that more details of the body surfaces may be

treated. In such a case it is necessary to use a more general formula than

the one developed in Appendix B. An expression for a pressure doublet inclined

to the flow was developed by Berman 9 . Such an expression integrated over an

element would give an inclined horseshoe vortex. This type of singularity is

unsatisfactory for the body surface since a wake trails back from each point

on the surface. Such wakes would then thread in and out of the body surface.

A similar expression for a velocity potential doublet would be desirable to

produce an inclined quadrilateral vortex without a wake. If any wake did

exist it could be added at the end of the body using unsteady horeseshoe

vortices.

2.5.8 The Image System for Wing-Tail Con!igurations

The method of images requires a L of constant cross section. The

image system trails back on the inside of the body without any changes in

lateral position. The application of the image system concept to bodies

of variable cross section with special refere..e to the wing-tail problem is

the subject of this subsection.

If a lifting surface system is attached to a body at only one location,

then a fairly simple solution to this problem exists. At the intersection of

the body lifting-surface system an average body cross section is selected for

use with the image system. The effects of the lifting surface on the actual

body c~n be determined on this average surfac In other words, the normal-

wash to the actual body surface generated by the lifting surface and image
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system can be calculated on the average surface. The results calculated on the

average surface are then applied to the actual surface as if they were calcu-

lated on the actual surface. If the residial Fiow field is reasonably uniform

(laterally), then very little error should be introduced with this method.

This approach is very similar to that of Woodward for steady flow. His

basic approach is to use slender body theory for the exact body shape in a

uniform flow to determine the axial doublet and source distribution. These
singularities are then used to calculate an oiset flow to the lifting surfaces

on the wing. Lifting surface elements are then placed on an idealized body

shape of constant cross section to account for the rest of Lhe interference.

If a wing-tail configuration is considered, then the tail must be attached to

the idealized body shape. This idealized shape usually takes on the radius of

the body as it is at the wing-body intersection. This may cause errors in the

tail loads for two reasons: 1) the relative positions of the left and right

horizontal stabilizers as well as the fin may be changed considera',iy to

accommodate the idealized fuselage shape, and 2) the loads in the presence of a
very large diameter fuselage are different from those iii the presence of a

small diameter fuselage. Reference 21 givqs examples of the Wjodward approach

for the B-58 and other aircraft configurations.

A possible solution for the wing-tail problem is to use onp idealization

for wing-body interference and second idealization for the tail-body interfer-

ence. This cannot be done with the Woodward approach, but it may be possible

with the present approach. For instance, the body idealization suitable for

the wing-body intersection could be used to determine wing-on-wing, wilg-on-
hnb, -andi wng on tail interferenc. 7he b^d, i; clizati- ..... f 4 k,j - ,......., .1 1 1 -j - . , ,, . ... ,V,,, Jo U I,,

tail-body intersection could be useJ to determine tail-on-tail, tail-on-boay

and tail-on-wing interference. Sketch 2.5-6 gives a graphical example of this

approach.

The relative positions of the left and right lifting surface systems are
now correct for the local influence of these surfaces on themselves. The

effect of the wing on the wing is very accurate as well as the effect of the
tail on the tail. The effect of the wing on tile tail deserves somE speci-l
consideration. The approach outlined accounts, in a crude way, for the face

that the wake follows the flow field around the body. Consider,, for instance,
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I

IDEALIZATION FOR DETERMIING IDEALIZATION FOR DETERMINING
THE EFFECT OF THE WING ON T1E EFFECT OF THE TAIL O\
ITSELF AND OTHER PARTS OF THE ITSELF AND OTHER PARTS OF

AIRC RAFT THE AIRCRAFT

Sketch 2.5-6

the trailing vortex at the wing root. This vortex follows the fuselage and

crosses the tail plane at the fuselage-tail intersection, i.e., at the

horizontal tail root. With the approach just outlined, the same effect is

achieved by placing the wing and tail-root sections at the same points

laterally. If more information is known about the wake location, either

laterally or vertically, the tail position could be adjusted to more ac-u-

rately reflect the relative geometries of the wing wake and tail. The idea

is to select an idealization that places the wing wake properly relative to

the tail since it is the wake that generates the strong wing-tail coupling.

Adams and Searb33 presented a fairly simple formula for calculating the

lateral streamline displacement about a body of revolution neglecting vortex

sheet roll-up. It is

r2 ( ): r2(l_ a2() + a2( ) (2.5-38)

Here r(C) is the lateral position of a streamline (where the radius is a ())

that had its origin at r(Wl) (where the radius is ao( l)). Such a Formula

could be used to determine where wing trailing vortices emanating at r(&l)
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will strike the tail plane. The use of this approach would cause practical

difficulties for the lattice method*. In the 'lattice method the trailing

vorticity is idealized in discrete vortex lines. These vortices must

impinge on the tail plane at strip edges (if wing and tail are coplanar or

near coplanar). The strips at the horizontal tail must then be adjusted so

that th2y align with th1e wing edges after the transformation (2.5-38) is

applied.

By far the largest factor in determining the position of the wing wake at

the tail is the vortex sheet convection and roll-up. Although the present

method does not determine this effect, there is no fundamental reason why it

could not be included at a later date. It seems appropriate, at the present

time, to delay the inclusion of the second-order wing-tail idealization

improvements (outlined in this section) until a full study of all of the

second-order effects can be made.

2.6 Body Force and Moment Distributions

Heretofore this report has cnncerned itself with the determination of the

singularity system that has been substituted in place of the aircraft. This

secticn deals with the loading obtained from the singularity distribution and

subsequently the generalized forces from the loading.

On all lifting surfaces the loading is equal to the singularity strength

and thus no further discussion is needed. However, for the bodies involved,

the situation is much more complicated.

The objective is to develop a simple set of expressions for the load
distribution on a body, in the presence of a singularity distribution. Both
the singularity distributions interior to the body (axial doublets, vortex

quadrilaterals and images) and those exterior to the body (lifting surface

elements and axial singularities on other iodies) generate lifting forces on

bodies. Unlike lifting surfaces, bodit, have nonzero thickness. A change

in potential, say from the bottom to the top side of a body, causes a net

*Such a method would be fairly easy to apply to loading function methods. The

spanwise distribution of vorticity would simply be modified by Eq. (2.5-38).
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force. The flow fields of all singularity distributions give rise to a

variation in x + iw across the body and thus generate a force on the body.

Such a variation is not experienced by lifting surfaces since they are of zero

thickness. The only variation is caused by the local potential jump, Ap,

which generates the local AC . The contribution to the loading from the

slender body singularities is easily obtained using the theory of Miles. The

contributions due to the rest of the singulaiities will be determined

numeri cal ly.

All of the sinqularities used to model the aircraft can be expressed in

terms of unsteady pressure doublets. It is sufficient, then, to develop an

expression for the force and moment on a body due to a point pressure doublet.
This expression is then applied to the equivalent pressure doublet distribu-

tion that has been, substituted for the actual singularity distribution.

2.6.1 Reduction of All Singularity Distributions to Pressure Doublet Distributions

The reduction of the unsteady horseshoe vortices to doublets is straight-

forward since the hcrseshoe vortex is simply an integration of the pressure
doublet in te spanwise direction over a short element. The unsteady horseshoe
vortex is simply replaced by one or wore poirt doublets depending on the
accuracy required and the distance between the horseshoe vortex and body.

Currently,in the present method, only one point pressure doublet is used.

The total dublet strength of an unsteady horseshoe vortex of strength ACp

is ACp A where A is thc area of the element associated with the horseshoe

vortex. In the analy,,is f Af,,pendix D it is assumed that ail point pressure

doublet strengths are given l'y , CA eveN Lhuu,, the doublet may be de t

an axial element ano not a lifting surface element

Consider now Che axial doublet of strength 11 associated with the

modified accaleratioi. potential (Appendix A, Eqs. (A-.19, -20)). The points

of concentrated pr_.. , (lelta functions), which correspond Lo the origin of

an equjivalent pce;"r . iueeare obtained from Lqs. (A-21) and (A-27) as

I i -ir, /

eC (2.6-1)
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F

where

AQ :6(n - na,  - a) ( ) (2.6-2)

Here 6 is a two-dimensional Dirac delta function, and

2 +  1I
c 2F l S  2

Thus c is the center of a doublet element running from F, to '2" When

is outside of the range shown, c jumps to the center of the next element.
Thus, c() is a step function at = I and 2" For an isolated element

c = 0 rI or > F2

Also for an isolated element

S= 0 < or F >or 2

that is, the doublet strength drops to zero off of the element as a step

function in ,.
_ i~c/U

The product 4Q e c then is also a step function at , = l and 2"

The derivative of this step function is zero everywhere except at , = ,

and 2 at which point it is infinite. The results are two delta functions.

i w /2t

P - na) p ea)6(/2Ue (2.6-3)

I - (n - n~a' - a)6( - 2) ei a/

where

-- c--l : 2--c

These expressions represent two-point pressure doublets: one at F :I of, i
strength pne U and one at =2 of strength e e- (A)/U

Sketch 2.6-i presents a graphical illustration of the singularity (the

imaginary part is omitted for clarity).
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Sketch 2.6-1

Usually the doublet elements are not isolated but are linked end-to-end

down the center of a body. In this case each end point possesses two point

pressure doublets whose strengths may be summed.

IV i A s/2Uw I -i WA s_1 /2U(AC-p6A = PT = Pse - 1s1le , (2.6-4)
p ST S-e

where s indicates the element subscript, i.e., element s lies directly

aft of element (s - !) on the same body.

The same analysis is valid for quadrilateral vortex rings except that horse-

shoe vortices are used in place of pressure doublets. At a particular end point

of an element there exist two horseshoe vortices: one emanating from the element

upstream of th-3 point and one from the downstream element. These two horseshoe

vortices are each replaced by one or more pressure doublets just as the lifting

surface horseshoe vortices were replaced by pressure doublets. The fact that

the upstream elerment may be larger in span than the downstream elemen Doses

no problem. The element width only enters in the determination of the element

area. The expression for the equivalent pressure doublet strength for quadri-

lateral vortices is,
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i wA /2U

AC 6A Lqs2dse

-i W _/

- 12ds le (2.6-5)

where Aq2d may be considered a doublet strength, ', since 2d is the width

of the trapezoidal vortex. In fact, for use with bodies, the doublet strength

tin is used instead of A7. Thus, Eq. (2.6-3) may be used for both doublets

and trapezoidal elements.

The loads due to slender body elements can be obtained directly using

Miles'slender body theory.

Acz = wzL + .- M (2.6-6)

bC y - b 12.6-7)
y a Wx a

L = 7r(2 aa0/;x + i2kr a o/)

(2.6-8)
M = W a C IF

where a is the local body width and b/a is the ratio of the semi-o

minor to semimajor axis. The terms wz and wv indicate upwash and sidewash,

respectively. The relation between the axial loading aF/ax, and the pres-

sure, Acz , Acy is:

aFz/q

Ix -6 z2a0  (2.6-9)

= C2a (2.6-10)
ax y o a

To simplify the logic of the computer program, these loads are converted to

point pressure doublets and treated like all of the other pressure doublets.

aF /q
(AC 6A) : - Ax (I + b/a) (2.6-11)

z Z x
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(AC 6A) = DFy
= YfAx (1 + a/b) (2.6-12)

p y Ps ax

The term Ax is the slender body element length. The factors (1 4 b/a) for

Ps and (I + a/b) for P' are applied because of the cross-sectional

effectivity. For example, aYcircle (a/b = b/a = 1) transmits only half

the point pressure doublet strength to the body; thus, the doublet strength

has to be multiplied by (I + a/b) = (1 + b/a) = 2.

2.6.2 Calculation of Force and Moment on a Body in the Presence of a Point

Pressure Doublet

The expression for the pressure at all points in a flow field due to a

point pressure doublet is given in Appendix D as:

C (x,y,z) =ACp, e ixM(x_) a e-_R (2.6-13)p 4 r I

where AC 6A is the strength of the point pressure doublet Lawrence and
p

Flax" 7 have integrated the steady version of this equation making use of the

following assumption. 1) doublet lies at a large distance from body, 2) body

is circular, 3) the pressure doublet is oriented in the z-direction and also

lies in the z = 0 plane, and 4) only the force in the z-direction is

desired. The bas 4c idea of the Lawrence and Flax method is to integrate the

steady version of Eq. (2.6-13) around the cross section for an arbitrary value

of x thus producing a distribution of force along the body axis. A second

method to be discussed later, integrates first in the x-direction (analytically)

nd thon integrates nmerically around the cross sdio to pro"c t o

Force (and moment). This method does not produce a distribution for a single

doublet since the total force and moment are lumped at the same x-direction
as that of the doublet.

A generalization of the steady flow method of Lawrence and Flax is

Gerived iii Appendix G. Specifically, the force distribution in both the y-

and z.-directions is derived for a doublet located at any point in the flow

field which has an arbitrary orientation. If N is a unit vector in the

direction of the doublet, and if n and r are the coordinates of the

doublet, then:
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0 i %q /+X 0 1 a 'I r > a (2.6-14)
S Ra a

where 2 2 2 2

N = + (x R+r

r 2a =  (y - h )2  + z - 2

and where ra _,is the radial distance from the circle origin to the doublet,

and 1 and i% are unit vectors in the 0- and radirections, respectively.

If this result is integrated to obtain the total lift on a body of constant

cross section, then

0 ( - r r) ra > a0  (2.6-15)

r a

The total moment on the body is zero since the distribution is symmetrical

in x for the steady case. An amazing result is observed from Eq. (2.6-15).

The total force obtained by integrating the approximate formula of Eq.

(2.6-14) is exactly correct as seen by comparison with equation F-13 of

Appendix F. Equation (2.6-14) was derived for values of Ra which are large,

however the integrated value is exact for all values of Ra where ra > ao.

A similar expansion for small ra/a gives the following result for
J 1u 4L 4. L,41 l 4. 411ouuuu eLs th~at lie nt16111I, ie body

AC 6 a2
a 0 + "r1 r) ra < a0  (2.6-16)
Ra

where

-2 2 2 2
R a = (x-) + 2a0

Again if this equation is integrated over a constant cross-sectional body.

then:

q 2 (1)O1 + 1rlr )  ra < a0  (2.6-17)

This result corresponds to the exact values obtained in Appendix F.
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Such encouraging results for the steady case (body of circular cross

section) indicate that a similar approximate analysis might work for both

the unsteady case and the case of noncircular cross sections. A derivation

for the unsteady case (circular body) is given in Appendix G. For the case

where the doublet lies outside of the body, i.e., ra > ao, the result is:

(/q)/x AC- 62 a2 iX[M(x- )-Ra] ( T .rTr) r > a (2.6-18)
4 a 00 r ra 0

where

To +i

a a 2  2r 2  W? ra2

Tr =T e  1 R Ra
a Ra R a

Here

$ = M U = 2k M 1 (2.6-19)
r 2"

For the case where the doublet lies on or inside the body, i.e., ra.< a0 , the

result is:

a=/)a 4 2a 0e iX[M( x-d a )T a] '1 V) 0 + 1%r (2.6-20)

r <a

a - o

These results can be integrated over a constant cross-sectional body to

give the total force. The term F/q ' 1e can be integrated analytically to

give

AC 6A d9'2

F- -/q ( _)H 2) ()) (2.6-21)
ra

where k .wrM/J and where H(2) is the Hankle function of the second

kind and zeroth order. The result for Fr/q must be integrated numerically.
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Just as in the steady case the total forces integrated over a body of

constant cross section are exact. The results of (2.6-21) and the results

of numerically integrating Friq are plotted in Sketch 2.6-2. The exact
results are obtained by the method presented in Appendices D and E (for the

total force).

The results for 3(P/q)/ax are given above in terms of uI o  and

Ir1r . A conversion to the y-z plane gives:r r
S(Fz/q )  3Fz q (()q

ax +Ny (2.6-22a)

3x y xax

where

,(F Z)/q) 3/_(F /q)x - cos 2el a/ + sin 2Ol a(
3a x 1 ax

(F y )/q )  (F/q) 2 a(Fr/q), y sin2ael + Cos 2l a r
=sne a x cs 1  ax

3((x/q _;~ snl,(Fr/q) (F,!q)

aX3x a

and where

tanel a~z~
" j y a)

Dx -- -le

a(F0/q) _ r/q)

ax ax r
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The circumferential integration for a circular cross section has been

performed. In the present method the force distribution is given, not at

every value of x, but at a set of points which correspond to the midpoint:

of a set of body elements (the slender body elements). The value of the

circumferential integration, a(F/q)jx, must be averaged over these elements.

If not, then errors could be introduced due to local variations Gver the

elements. The average of (r/q)ax over an element is obtained by integrating

it and dividing by 6x. Ultimately the total force , F/q on the element is

required, thus the division by Ax can be left out.

q +(Ax/2) dx

f x

xA-(Ax/2)

where XA and Ax are the element center and length, respectively. In

equation (2.6-22) the elements that go to make up a(r/q)/3x are
)(z)/q)/ x, (F(Y)/q)3x, and 3(F Y)/a/3X. These are all integrated in

the same manner as is 3(-/q)3x producing:

F(z) xA+(Ax/2) 3(F(z)/q)
z dx (2.6-23a)

x A- (Ax/2)

F(Y) ]A +(Ax/2)  FY/)

_.L_ = dx (2.6-236)
qjf axq X /2)

F(Y) xA+ ( x/2) F(Y)/q)

z _ dx (2.6-23c)

x A- (Ax/ 2)

Also, required for future analysis is FyZ)/q. This case is

F(Z)/q = F(Y)/q (2.6-23d)y z
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In addition, future calculation will require moments on the elements. For
this method (circular bodies) the moments are zero.

The above simplified approaches for the steady and unsteady cases (which
will be called Approach I) are based on expansiois in terms of ao /Ra or
r a/R . As such they are approximate even though the total forces are exact

(the total moment is correct for the steady case also).

For the case of an elliptic cross section, the simple expansion techniques
used above and derived in Appendix G (Approach I) fall to converge to sufficient
accuracy for the total intL;rated values. Therefore, these results are not
presented. A different approach (Approach II) will have to be taken for the

case of noncirculhr cross sections .

The basic idea of the second approach is to reverse the order of integra-
tion in finding the total force on the body. That is, Eq. (2.6-13) is
integrated in the x-direction first and then integrated around the cross
section. The advantages of this method are that: 1) unsteady flow can be
considered for bodies of arbitrary cross section since Eq. (2.6-13) can be
integrated analytically along the body, and 2) only a single term arises from
the expression and not an entire distribution for each pressure doublet. The
disadvantage of this method is that although the force and moment are correct,
the detailed distribution is not given. (See Sketch 2.6-3 for a graphical

representation of approach II.) In a practical problem there are many
pressure doublets and approach II produces a distribution since there is a
distribution of pressure doublets. The distribution, however, is more abrupt
tlan the ctual since the force and moment are concentrated at one point.

The integration of Eq. (2.6-13) to obtain the total force and moment is

carried out in Appendix D. The integration in the x-direction is performed
analytically in terms of two Hankel functions. The results are:
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F. = Z r-1 d (2.6-24)

M = flr I -L-n- -n 1- ds (2.6-25)
qr F

I'wiere

f() -i j_ FH (2) k

2 o(k

H 2 Hankel function of second kindr

2k r 2M r/E

k (c- 2IJ

=direction of pressure doublet
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1 direction of force "

r = direction of radius r

T (y - n) + (z - c)2 T(y - n) + k(z= r

1U 2
q = 2 = dynamic pressure

and where the contour integral is to be taken around the cross section. The

cross-sectional shape under consideration is the one possessed by the body at

the longitudinal location of the point pressure doublet. Currently, for

simplicity, the constant cro!.s section designated by a and b is uced

instead of the local values, ao  and b 0. Appendix D shows that higher-

order moments diverge and thus cannot be used.

The integrals found in Eqs. (2.6-24, -25) can be evaluated analytically

for only the simplest cases. One such case is the one considered earlier in

this section, i.e., a circle in steady flow. Appendix F gives the details of

this integration. The results are:

F _C 6AI (2.6-26)
q

I N .Pressure doublet inside body
S= (2.6-27)

11 Nl(a/r Pressure doublet outside body
' F I aares

whre e is L Ue circlie radius, r a  iv the radial distance from the pressure

puint to the circle center, and

N I k sin -20) - icos ( -0)

where ,t and 0 a 'e defined implicitly as follows:

N k sin + .cos q

r j{k sin o+ j cos o}
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For other cross-sections the integrals in Eqs. (2.6-24, -25) must be

done numerically. Appendix E gives the details of a successful numerical

Scheme for evaluating these integrals.

The basic idea is to break up the contour integrals into a sum of

integrals over short surface segments. On each of these elements the values

of f(k) and p(Dk) may accurately be held constant. The integrals then

become:

F/q = f/ f r ds (2.6-28)

j=l -e

M/q LC P N p - N . -F ds (2.6-29)

j=l -e

The integral over the small element extending from -e to +e in the

moment equation (2.6-29) is very simple since no singqilarities exist.

However, the 1/r singularity in the force integral reqlirps special treat-

ment and Its accurate evaluation is difficult. Several procedures were tried

which ignored the curvature effect. lhese proved to be inaccurate ard had to

be abandoned. The major part of Appendix E is devoted to the evaluatinr, of

the element integral in Eq. (2.6-11). It is convenient to hreak F/q and

M/q irto their component parts

F( z)
z - F - T r

(Y)'

'z F (if + " )
q qr (2.6-3o)

F(Z)- -- F(N k, T:'
q qF

F(y) f (- -r,

Simildtr expressions may be written for M/q.
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To test the accuracy of the formulas in Appendix E, comparison is made to

the analytic solution for a circle given in Eqs. (2.6-26, -27). Figure 4

presents results for the cases

(a) 1Fk

F

(In Figure 4 as well as Figures 5, 6, 7 and 8, AC p6A is assumed to he unity.)

The numerical results are accurate even near the body surface. It is near the

surface, both inside and outside, where greatest difficulty is encountered in

obtaining accurate solutions. There is a tendency for the internal solution to

drop below its correct constant value near the surface. Similar calculations

were carried out for elliptic cross sections. One such calculation is given

in Figure 5. The internal values stay constant except near the surface where

a slight variation is noticed. In Figure 5 the pressure doublet is located

in the z = 0 plane. In Figure 6 a similar plot is showr. Here, however,
the doublet lies in the y = 0 plane. No irregularities are observed.

The reason for the difference in accuracy between Figures 5 and 6 is the fact

that near the surface the curvature is higher in Figure 5. Figure 7 is pre-

sented to furnish a chrk on the unsteady case. The pressure doublet is

located on the axis o' j circle. In this case the integrals of Eqs. (2.6-24,

-25) are easily performed since r is not a function of the surface coordi-

nate s and can be taken out of the integral. The results are:

F AC 6A

q 2 f(D]T

M = 6A a

where

T = NyiF + NziF
y z

In Figure 7, T and AC p6A are assumed to be unity. The comparison of the

analytic and calculated results is essentially perfect. Notice that for
the steady case, the pressure doublet of strength AC16A produces a lift on

the body of strength C p6A/2. For other cross-sectional shapes, this
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factor changes. For an ellipse in steady flow with a z-oriented pressure

doublat located inside the cross section. the variation of the force with

b/a is

F-apA a)

As the cross section becomes flat (b -+ 0), the bocy becomes more effective

until b = 0 at which point the body becomes like a lifting surface and the

force is equal to the pressure doublet strength, AC p6A. 'igure 8 presents

a comparison of this formula with calculated numerical results. The agree-

ment is very good even for '.ery small values of b/a ur a/b.

2.6.3 Fffez.ts of Symmetry, Ground Effect and Images
The method outlined so far considers only a sinqle point pressure doublet.

In actuality for every pressure doublet located on a lifting surface, there

may be: 1) one for symmetry, 2) one for ground effect, 3) one for the inter-

action of symmetry and ground effect, 4) images in bodies associated with the

lifting surface, and 5) images due to ymletry and ground effect. The Z-force

on body, b, due to pressure doublet located at ,n, oriented normal to

a surface of dihedral y is:

FZ(b) = cos y z)( ,i,,) sin y (

NABAz) (b) (b)) (b) F(y)( b),(b)
+ Lz [ z y z

b=l

cos yFz)( ' -
1

',) + sin yF(y)(, - ,) ,I
+ NAB , :nb i )

+ E r[(b)rz)(r. .(b) (b)+ y) _(b) )

I b=1

'COS yF(z)(r,n,- )+ sin yFzY)( ,n,-0)

+ c NAB I b
b= 1 z 1 NY Z

b=l
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MMM ------ * 
-T *

z z " +I y zb= 1

where

z z'C :(2.6-32)

p

and a similar result holds for 07 ), Fz) etc. The term NAB indicates thea z
bodies associdtedi vith the pressure doublet, i.e., those bodies that have
an image of the pressure doublet within them. The terms '#z and 1y
arise from the fdCt. chd the imige point pressure d-)ubl. t has a modified
strength az shown in Appedi', C, Eq. (C-5). If this equation is rewritten
in terms of real variables <.rd Te ci,'cl!. rcdius a 'A rep Pced ,,ith Lhe

,adius of Curvature a , ,

a)~ O .fY )( 7<

' 4 
a

(2.6-33)

where
,2 + \2

,- + (, .Za)

and Nhere z Z z e tLF. co(odinates of the local center of curvature (for

a ci.r(le tne-,,, w e',,irdinates of the body axis)

An exL .r ,at t.-, Eq, (2.6-31) may be written for the force in Lhe
y-dire(tion, (., '. The ,rn,, c.a't i to be made are that F(Z) is
rupla,.e,' h ' i replaced by y ). For the moment calcula-

e t - Mi , s. (2.6-31) may be made to hold for
11Z Pr I r' , 11 , ' f, i i .; %.(,. axes by: I) omitting al "images,

S CL, ,_ or'enc%,d dou.lels and -90' for y-oriented
" reV.



So far, two basically different methods have been describpd; one for

bodies of circular cross section and one for all other bodies. The first of

these methods produces a distribution of forces on all elements ot the body

due to a single doublet. If we characterize all doublet strengths as AC p'A,

then the total force at an element is:

ZZb FZ(') (6C 6A) (2.6-34)

where r represents the receiving element and s respresents the sending

doublet. A similar expression exists for FYb)' . In matrix notation

{FZ(b)} = [FZ(b)] (AC 6A} (2.6-35a)T p

{FY(b)I = [FY(b)] {ACp6A} (2.6-35b)
TFYT

The superscript b stands for body. There is a column matric FZ(b) and

FY (b) for each body.T

For the second method, each doublet produces a point force and moment on

the body. As illustrated in Sketch 2.6-4, the longitudinal ocation of the
Z

UNIFORM DISTRIBUTION

x - .SLENDER BODY \ \
ELEMENTS y

IF1ING POlrN, P '{I/S IF F RACCE A
I'(OX DOT M 1 1

Sketch 2.6 -4
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center of force is at the location cf the point pressure doublet. Again

the slender body element system is used to keep track of the loads on the

bodies. If the longitudinal location of a point pressure doublet lies between

the leading and trailing edges of a slender body element, the force and

oirient are added to the load on that element. To smooth out this bookkeeping

procedure, it is assumed that the force is uniformly distributed over a short

segment, on the axis of the receiving body, whose length is equal to the length

of the element upon which the point pressure doublet lies. Thus, the force

and moment due to one pafticular pressure doublet may be spread out over

several slender body elements. Sketch 2.6-4 gives a graphical example. The

load and moment due to the pressure doublet is distributed over slender body

elements 3, 4 and 5. The center of load on these three elements lies at a,

b, and c, respectively. The fact that the load is off center contributes

to the moment on the slender body elements.

2.6.A Redistribution of Body Loads for Alternate II

The previous sections have described the two methods of determining the

force and moment distributions for bodies. For alternate II (general body

cross section) the contribution of each point pressure doublet emanating from

each sinaularity ard image, etc., is allocated to the proper slender body

element. The final result for a body, then, is a distribution of forces

among its slender body elements. The distribution thus obtained approaches

the exact distribution as the body radius becomes small. For thick bodies,

however, the resulting distribution is somewhat distorted evan though the

total force and moment are correct. The only way to avoid this distortion

is to consider tnat each pint pressure doublet contributes to all slender

body elements as the result of its longitudinal distribution. To do this,

however, Eq. (2.6-13) would have to be integrated first around the contour.

Such an integration has been done for circular cross sections but has not been

done for elliptic cross sections. Until such time as this integration can be

performed, alternate II will be used for such cases. There is a way to allevi-

ate somwe of the distortion of alternate II and that is by redistribution.

After 'he effects of all point pressure doublets have been allocated among

the -i' body elements, assume that these forces have arisen solely from

an axi ,nt pressure doublet distribution within that Dody. Only a

relatively small number of point pressure doublets are now considered. It is
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assumed that Eq. (2.6-20) gives a good approximation to the shape of the

longitudinal distribution of the Iirce along the body, even though it only

holds for circular cross sections. The body radius used is (a. + bo )/2,

i.e., the average of semi-major and semi-minor axes. The redistribution thus

outlined will not, then, affect the total lift of the distribution. This

redistribution is then applied to each of the slender body elements. Even

though the results obtaired using this method show good agreement with

experimental data, it is not proposed here as the final answer to the distri-

bution problem. Further work is required to integrate Eq. (2.6-13) around

arbitrary cross sections.

2.7 Generalized Forces and Aerodynamic Parameters

2.7.1 Generalized Forces

The pressures, forces and moments obtained on lifting surfaces and bodies

along with their appropriate displacements are outlined as follows:

1. ACp, h, (normal to lifting surfaces)

2. a(F z/q)/x, hz  (z-direction on bodies)

3. (Fy/q)/3x, hy (y-direction on bodies)

4. 3(Mz/q)/ x, dhz/dx (z-direction on bodies)

5. 3(M /q)/3x, dh /dx (y-direction on bodies)

y y

The virtual work, 6wj, done by these pressure forces and moments during

a virtual displacement is:

q- = G ff ACp.6h ds

R.S.

+ 3- /). 6hz d + - - / hy d

B. B.

B. ( 6q. d d~ + B. a(M/q). 6~ / (2.7-1)
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where q is the dynamic pressure. The integration limit R.S. indicates that

only the lifting surfaces on the right-hand-side of the aircraft are considered.{ 1 if lifting surface lies in plane of symmetry (e.g., vertical fin)

2 otherwise

The integration limit B. indicates all bodies lying on the right-hand side

of the aircraft.

1 if body lies on plane of symmetry (e.g., a fuselage)

I 2 otherwise (e.g., a nacelle)

The integral over the lifting surface L.S. represents a series of integrals

over each of the lifting surfaces which go to m.ke up the total configuration.

The value of G for each of these surfaces may be different. A similar

argument is valid for the integral over the bodies B., thus the value of

g may vary from body to body.

The values of @(F/q)/mx and a(M/q)/Dx are the original values obtained

before redistribution.

"wo definitions for the generalized force will be introduced, i.e., Qi

aid Qij"

6W. =(2.7-2)
q

J -2s3  Q. . (2.7-3)q _Qij qI

Here qi is the i-th generdlized coordinate, F the reference chord length,

A the total reference area and s the reference semispan. With the intro-

duction of generalized coordinates, the displacements may be written:

78



h c cqif i

i

= cZ~f~(2.7-4)

Introducing the virtual displacements of Eq. (2.7-4) (and its derivative)
into Eq. (2.7-1), and equating (2.7-1) to (2.7-2, -.3) gives the results for

the generalized forces Qij and Qij"

Qij G sf" ACp.fids

+gj f -(Fz_/q)J + f (F /q).+I fz dE + Y / fy .r

B. " B. I

+ f (M /q). dfzi / (Mz/q)j dfyi i
3 d--- - d +i f d --dg (2,7-5)

B. B.

= Q j I .AZ3 (2.7-6)

2.7.2 Aerodynamic Parameters

Tt is desirahle and gometimes necessary to generate conventional apro-
dynamic data. Such data, in addition to being useful in itself, provide an
excellent check for the computer Drogram and/or specific cases -o be rrn by
it.

The local ncrmal force coefficient and pitching moment coefficient about
the local 1/4-chord pcint are:
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: 1 f ACd (2.7-7)
chord

: _ 1 JA ( - i/4 )d (nose up) (2.7-8)

C

where c is the local chord length. The local center of pressure is:

-Re(cm)
c.p.Re = Re(c) + 0.25

n (2.7-9)
-Im(cm)

c.p.lm i--- n - + 0.25

The total vertical and side-force coefficients on lifting surfaces are

Cz ( + 6) f CCndn (2.7-10)A f n

R.S.

Cy (1 -6) (G) f ccnd (2.7-11)

R.S.

The total vertical and side-force coefficients on bodies are

0 ( + 6) f '(Fz/q)

C ( 9 d (2.7-12)
B.

Cyb  -A F d (2.7-13)
Yb A gj f

B.

The uitching and yawing moment coefficients on lifting surfaces taken about

the point XM are:
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CM =(+6) 0 C2Cm ccn(r114-XM) dn (nose up) (2.7-14)
M Ac f ccm -c t -X)

R.S.

CN (-6) f -CCn( ll 4 -XM)Id (nose right) (2.7-15)
N Ac ~R.S. n1/

For bouies

(1 + 6) (M/q)a (Fz/q)
CMb A B (9 -XM) - d (nose up) (2.7-16)

B.

C b  = _g~c . "- (  -XM) d (nose right) (2./-17'

The total rolling moment for the aircraft is:

C - ndn + G f ccnd + f (Fz/3 )d&
2 n 2 n na

R.S. R.S. B.

+ g JB a ad (right wing down) (2.7-18)

B. )

I8
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3.0 CALCULATED RESULTS

3.1 Parameter Variation Studies

Before discussing the correlations of th- present method with other

theories and experimental data, a series of studies will be made to determine

the2 effect of varying some of the important parameters of the problem. These

studies not only show how results are changed by changing a parameter but also

indicate the range of validity of the present method.

3.1.1 The Effect of Body Radius

Figure 9 presents a comparison of spanwise lift distribution on a wing

(exposed portion only) that is attached to a circular fuselage whose radius

has been varied. The exposed wing is the same in all cases - it is attached

to the fuselage center - and is oscillating in pitch at a reduced frequency

of unity. The fuselage is at zero incidence and thus the upwash generated

by the fuselage is not present. Thus, this figure gives only the interference

effect of the fuselage. The effects of zero radius and infinite radius are the

same. Consider the lift coefficient at the wing root. When the diameter-to-

chord ratio is increased from zero to 0.125, then the lift drops. A further

incre&se to 0.50 produces an increase in lift coefficient over the zero value

case. Further increases eventually bring the fuselage effect back to the

zero diameter case.

The effect of the fuselage when it too is given an angle of attack is

mich different. The effect is monotonic in fuselage diameter-to-chord ratio

and in the limit of infinite radius the lift coefficient is twice tne zero

UIUIIIeIAI value.

3.1.2 The Effect of Cross-Sectional Shape

The effect of fuselage ellipticity is illustrated in Figure 10. Specifically,

the distribution of lift coefficient for a wing-fuselage combination is pre-

sented for the aspect ratio b/a ranging from zero to infinity. The semi-width

a is constant and equal to 0.2s for all calculations. The cdse b/a = 0.0

is spc.ial and is obtained by replacing the body by a flat-lifting surface.

lhe case b/a = o is also special and is obtained by placing a plane of
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sy uietry at the wing --ot (this case is given the designation of "wing alone").

All of the intermediate cases which are not special should lie within the

envelope formed by the two special cases described above. The curve corres-

ponding to the lowest value of b/a (=0.25) does not fall within the envelope.

The curve corresponding to the highest value of b/a (=2.0) still lies inside

the envelope but comes very close to passing outside of it. The upper bound

of validity, for b/a, of the present method, is then somewhere near or

below 2.0. The lower bound of validity for b/a is somewhere between 0.5

and 0.25. If configurations are to be analyzed that fall outside of this

range, then it is recommended that either the body be replaced by a lifting

surface (b/a < 0.5) or a plane wall for (b/a > 2.0). An additional alter-

nate is to place lifting surface singularities on the body surface in addition

to, or in place of, the image system.

The use of lifting surface singularities on the body surface, as described

in Part I of this report, does not always increase the accuracy of the solution.

Figure 11 presents a comparison of the present method with the method of Part :
for the wing-fuselage combination (b/a = 2.0) of Figure 10. Two separate

idealizations are used to describe the fuselage. The first idealization uses

three panels or strips to describe a quarter of the fuselage. The resulting

calculation falls below that of the present nethod. Wher the number of fuselage

elements is doubled, the agreement is improved. The actual spanwise distribu-

tion of lift coefficient probably lies between the present method and the six

strip idealization since Figure 10 indicates that the present method may be

high by a slight amount and Figure 11 indicates that the method of Part I may

be low.

A third calculation which has not yet been discussed is the use of lifting

surface panels and images in the present method. This calculation has not been

done for the steady case of Figure 11; however, Figure 14 shows such a calcula-

tion for the unsteady case, and is discussed below.

3.1.3 The Effects of Frequency

a A comparison of the lift coefficient, as calculated by the present method

and the method of Part I for a wing-fuselage combination, is given in Figure 12.

The motion of the wing may be described as a modified pitch where the normalwash
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corresponds to that of steady pitch. The effects of frequency enter through

the influence matrix [DT]. The fuselage has a circular cross section and is
not in motion. Agreement between the two methods is good for the two common

frequencies (kr = 0,0 and 1.0). Intermediate frequencies, kr = 0.1 and 0.5
are also plotted to show the variation with frequency.

3.1.4 A High-Wino Configuration

A comparison between the results of the present method and the method

of Part I is shown in Figure 13. The wing-fuselage combination associated
with Figures 10 through 12 is used except for a small extension of the

exposed area of the wing at the root section. The total semispan is held

constant and in order to join the wing to the fuselage; a small extension
to the wing surface is required at the wing root. The comparisoii between the

two methods shows the same trends observed in Figure 1I, i.e., that the
results of the method of Part I lie below those of the present method.

Also shown in Figure 12 are results obtained for the midwing case. These
results lie below those for the high-wing case.

Figure 14 presents a similar compaison except that the frequency is 1.0

instead of 0,0 as in Figure 13. The wing is pitching about its root leading
edge. The body is at rest. In this case the real parts are in good agreement.

The imaginary parts, however, differ near the wing-fuselage juncture. The

imaginary lift coefficients for the present method lie below that calculated
by the method of Part I. This seems to be contrary to what is expected since

the results of the present method have been greter than the results of the
method of Part I in Figures I and 13. A third calculation is presented to

help decide which solution is most accurate. Specifically, the third solution
consists of placing lifting surface elements on the body surface in addition

to the images of the present method. The results agree almost perfectly with
the present method near the wing-fuselage intersection. However, over the

outboard half of the wing this calculation agrees best with the method of
Part I. However, it may be observed that the difference among any of the

solutions is fairly small over the outboard half of the span. This figure

indicates that the image method is most accurate for this case.
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3.1.5 End Plating Effects

In all of the calculations presented thus Far, the configurations have

been symmetrical about the y = 0 plane. If the left-hand wing half is

omitted froim the calculation, then the effect of body end-plating can be

ascertainea. Such a calculation is presented in Figure 15. Again the same

midwing configuration, ds fov,.id in Figures 10 through 12, is used except for

the missing left wing half. It is expected that the end-plating effects, as

obtained by the present method, are slightly smaller than they should be. Two

reasons are offered for this: 1) the image within the ellipse is cdt off once

it crosses the y = 0 plane, and 2) the inte,'ference singularities cannot

account for a flow that is antisymmetric across the body. If the body were

circular, then the image would fully account for the end-plating effect and

the onset flow to the body would be symmetric across the body thus allowing

the axial singularities to properly account for interference. However, for

the elliptical case, some of tihe end-plating effect may be lost due to the

approximated and abbreviated image system. The resulting residual flow should

make up for this loss in end-plating. However, flows that are antis)m1metric

to the body surface cannot be accounted for because of the truncation of the

miultipole series. if one further term were added to this series, then this

effect could be accounted for even for highly elliptic cases (b/a 1.0).

A comparison of lift coefficient distribution as calculated by the present

method and the method of Part I, is presenteo in Figure 15. The wing is given

an angle-of-attack ot 1.0 radians. The body incidence is zero. The two

methods appear to be in very close agreement. Figure 11 presents the identical

case except for symmetry. in Figure ii the calculated results of the present

method lie everywhere above those of the method of Part I. However, in

Figure 15 the lift distribution as calculated by the present method falls

below that of the method of Part I over most of the span. This shows that,

relative to the method of Part I, the present method has lost some of its

end-plating effect.

The end-plating effect of a body whose ellipticity b/a falls below

unity (b/a < 1.0) is a different matter. In this case the important Uomponent

of the residual flow to the body is symmetric. As the body becomes flatter, the

residual flow may lose some accuracy, as already illustrated in Figure 10, but
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the ability to furnish an end-plating effect remains intact even for very

small b/a ratios. Of course, if b/a becomes small enough, the body can

be teplaced by a lifting surface.

3.1.6 The Effect of Pickup Point Location

The averaging process (applied to the residual onset flow) outlined in

Section 2.5.6 involves finding the flow normal to the body surface at various

points around the cross section. These points are input quantities to the

computer program of the Present Method. Figure 16 illustrates the effect of

increasing the number of these points. In the lower curvw, 1izl* represents

the z-corponerit of the interference doublet strength normalized by the doublet

strength that would exist in the fuselage if it were pitched up at the same

angle-of-attack as the wing. In this case the wing alone is pitched up to

one degree and the value of .* is 0.001095. The upper curve gives the value

of /y*. Of course, for this symmetric case, this quantity should be zero.

If the values of -- were chosen symmetrically (say e = 450, 135, 225, 315)
then the ficticious /- woLldi not -ppear. As the value- of - are

y '^V
rotated away from the symmetric position, the ficticious i y/* appears. At
150 of rotation it is at its worst (upper curve given by circles). At this

worst possible point the number of points is doubled. The -esult is a two-

thirds reduction of the error. Thus, as the number of interra+4,,l. puoints

:ncreases, the accuracy increases. However, a judicious choice cf these

points wiil allow fewer of them to be considered for the same accuracy.

3.2 Correlation of the Present Method with Other Methods and Experimental Data

3.2.1 Wing-Fuselage Combinations (Emphasis on Wing Loads)

A wing-fuselage comparison presented in Reference 8 is represented in

Figure 17. In addition, calculations using the Present Method are shown.

The span load for a wing (at 4.7' angle-of-attack) attached to a cirpular

fuselage (at 0.70 angle-of-attack) is given in this figure. The agreement

between the Present Method and che methiod of Reference 8 is excelleit as is

the correldtion with the experimental data s°. Since this is a steady case,

the agreement between the two methods shuujld be perfect; however, a change in

the number of spanwise strips near the tip has caused a slight disparity.
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A second wing-fuselage comparison presented originally in Reference 18

and in Part I of this report, is reproduced in Figure 18. Shown in this

figure are span loads for two modes of motion;

Body Pitch, hz e =i

Body Camber, h R # @#2 eit

The first of these is pitching (of the body only) about the point x which is

tie coordinate of the center of the booy. The second mode is a cambering of

tie body only. The nodal point is at xc. The maximum amplitude of oscillation

occurs at the body leading and trailing edges and is equal to the maximum body

radius at its center. The body length is L.

The original version of Figure 18 contained a comparison of three differ-

ent methods. To this list the Present Method is added. Again the Present

Method agrees with the method of Reference 8. (Actually, for this figure,

the method of Reference 8 has been modified to account for the douLlet distribu-

t;on on a body of varying radius.) The other methods referred to are those

of Woodward " and the method of Part I of this report. There are no voiume

effects for this problem since axial sources will not affect the wing as it is

placed on the fuselage for this case. Actually, the nonlifting (source) effects

of volume are not large in most cases and -an usually be ignored. Also, in

unsteady flow there are ro nonlifting (source) volumc effects since the volume is

not changing with time. Currently, no volume Effects are contained in the Present
Method.

The results presented in Figure 18 are for steady flow. The method

of Reference 8 and Woodward's method are restricted to steady flow; however,

the metho6 of Part I is not. Figure lq presents a comparison of the Present

Method with the method of Part I for the same configuration considered in

Figure 18 but oscillating at a frequency of 1.0. This figure is a duplication

of one found in Reference 18 and Part I of this report, with the results of

the Present Method added. The real part of the span load due to body camber

was plotted with the wrong sign in the original figures but is uorrected here.

Also, in Reference 18 there appears an error in the labeling cf the ordinate.
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The agreement between the two results is good for the body pitch mode

but -s only fair for tne body camber mode. The results eQc the Present Method

look more realistic, especially for the imaginary pa't of the span loads due

to body camber. The probable reason for the disparity is the idealization of

the body for the method of Part I. If more panels were placed on the body,

an increase in accuracy would probably result (refer to Figure 11).

3.2.2 Wing-Fuselage Combination (Emphasis on Fuselage Loads)

The four maethods compared in Figure 18 are again compared in Figure 20.

The original version of this figure appeared in Reference 13. To this fig-

ure the results of the Present Method have been added. The configuration

consists of a simple swept wing attached to a very large aiameter circular

fuselage. The wing is at 1.0 radian angle of attack while the fuselage is

held to zero incidence. All methods are in good agreement. However, the

Present Method is in better agree.nent with the method of Reference 8 while

the Woodward method is in better agreement with the method of Part I. Again,

the method of Part I predicts a lift coefficient distribution that lies below

that of the Present Method.

Special attention should be paid to the fuselage span load. The usual output

of the Present Method is a longitudinal loading along the fuselage length (see

Figure 21). Also the total lift is known for each body. If this totallift

is normalized by the root-chord length and the spark over which it acts, then

an average span load is the result. This average is shown as a horizontal

dashed line across the fuselage. The area under the horizontal dashed line

seems to be low cnmparpd with the arias produced by the other ,meth,ods; however,

this is deceptive and requires an explanation.

For steady flow and circular fuselages, it can be shown that an excellent

approximation to the fuselage span load is made up of a constant load minus

an elliptic one. The constant has the value of the lift coefficient at the

root and this cinstant value extends from the fuselage center to the wing root

and no further. The lift loss due to the elliptic distribution extends from

the fuseldge center to the edge of the fuselage. As in this case (Figure 20),

the fuselage edge extends out beyond the wing root position and thus there is

a region between the wing root and fuselage edge where there exists only the
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negati.-a elliptic distribution. Combining these two loadings gives the dashed

curve across the fuselage in F~ire 0. Notice that the two curves combine to

give a posi !e spar load acrass that part of the fuselage that does not

overlap the wing. Over the overlepping part, the lift is negative. The areas

under the two dashed curves (one constant) are equal. The agreement between

the method of Reference 8 and the Present Method is excellent over that part

of the fuselage not overlapping the wing. It is convertional to take tile

negative lift distribution that exists in the overlapping region and add it to

the wing span load. If this is done, all curves are in close agreemert. The

deceptive aspect of this plot is the fact that the span load in the overlapping

region of the fuselage and wing is attributed to the fuselage alone. The

fact is, however, that the soan load on the fuselage in this region is actually

negative. This explains why the area under the dashed horizontal curve (which

applies only to the fuselage) is equal to that under the curved dashed line.

The spanwise distribution of fuselage lzad is given in Figure 2n.

Figure 21 presents the longitudinal variation o;" the same fuselage lift.

Four curves are shown: one die to the method of Part I and three due to the
Pres~nL enthod. e,,, loadin on the fuselage is due entirely to the wing

(lift carryover) since the fuselage is at zero incidence. Ps expected, the

Present Method Alternate II does not compare very well since the body has a

large diameter compared to the wing dimensions. As noted in Figure 20, how-

ever, the total lift is in excellent agreement with the other methods. The

moment (not shown) is also very good; however, the distribution of force is

skewed due to the assumptions made in alternate II. Some of this skewness

can be elintirated if the approximate redistribution technique, described in
Section 2.6.4, is employed. The curve marked Present Method Alternate II

(redistributed) is in closer agreement with the method of Part I. Since the

body is circular, Alternate I may also be used. The curve marked Present

Method Alternate I shows excellent agreement with the results of Part I. The

resuits of the Present Method Alternate I lie slightly above the results of

Part I but this is expected since the wing loading shows the same trend.

Figures 22 through 32 present a correlation of the Present Method with

the experimental data of K6rner l and the theory of Labrujere20 et al. There

are a total of four configurations considered: 1) a swept wing alone (see

Figure 23), 2) a swept wing and a fuselage (D/c = 1.0) (see Figure 24),
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3) a swept wing and a fuselage (D/c = 0.68) (see Figure 26), 4) and a strai,- t

wing-fuselage combination (D/c = 1.0) (see Figure 30). The swept wingsin a I

of the configurations are similar. Each has a constant chord and is swept 4".

The span is the same for all configurations and the only changes to the

wings are those necessary Lo extend the wing root to the fuselage surface.

In the case of the wing alone, the wing is extended to the y = 0 plane.

Figure 22 presents the idealization of configuration 2, i.e., swept wing with

D/c = 1.0. This idealization is typical of all the others. 'The solid lines

represent lifting surface ur body interference element boundaries. The dashed

lines represent slender body element boundaries.

The experimental data of Reference 51 are given for various angles of

attack. The value of cz (per degree) may be obtained from this data.

Figure 23 presents a comparison of the distributioti of lift-ciu-ve-slope as

calculated for a wing a one using the Present Method and as obtained from

experimental data. Experimentally,there is an obvious loss of lift due to

viscosity. !otice that c, is lower at a = 60 than at 3'. This is

a clear indic-tion of a nonlinear viscous effect in the data.

Figure 24 presents a similar comparison except that the configuration

consists of a wing and fuselge. The fuselage is at zero incidence while the

wing is pitched up. Again c across both the wing and fuselage shows

the characteristic loss of lift due to viscosity.

This loss of lift due to viscosity lb accentuated when the fuselage is

given the same angle of attack as the wing. Figure 25 presents such a

comparison

Figures 26 and 27 show comparisons similar to those given in Figures 24

and 25. The configuration is almost identical except for the fact that the

fuselage is smaller (D/c = 0.68). The span load behaves in an interesting

manner in Figure 27. The comparison seems to be very good over the outboard

nalf semispan. The agreement then deteriorates toward the wing-f'uselage

intersection. This could be due to the thickening of the boundary layer in

the region of the wing-fuselage intersection.

The 'longitudinal loading, as calculated by the Present Method, is

compared to that deltrmined experimentally in Figures 28 and 29. The fuselage
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incidence is zc'-o in Figure 28 and equal to that Gf the wing in Fiqur C.

In the region near the wing Alternate I and the redistributed Alternate II

are in good agreement with the experimental data. A large disagreement

between Alternate I and Alternate II appears at the leading and trailing

edgri of the body in Figure 29. The basic reason for this is the fact that

the ',tal lift of a slender body eiement is lumped at that element Tn the

method h Ph, nate II where as it is 6istriDutea over tne body for Alier, att

I and Alternate IJ (redi-trihuted).

Labrujere et a,. 0 compared their steady flow theory with K6rner's data

for an unswept-wing/L- .ombination. Figures 30 and 31 preent comparisons

of the spanwise lift coe ficient distribution for a wing at 6" angle of attack.

The fuselage is at zero degrees inc-dence in I'igure 30 and at 6O in Figure 31.

For the case of zero fuselage incider:e the m'esent Method is in closer

agreement with the method of Labrujere ' al. than with the experimental dta.

However, for the case where the wing an( Lselage are 't the same incidence,

the distribution claculate( uy the P.-eser,. Metlod lies J.most equidistant

between the datd and the method of Labrujl e, al. The discontinuity in

the span load apparent in the theory of Le'rtjeie et al. s caused by the fact
that the fuselage does not close, due to t, v1nd tunnel s ng, and thus there
exists a resultant slender body lift.

Figure 32 presents a ccmparison of experimen il and calct, ated longitudinal

luaainq for the zero incidence fuselage case. The ,eJistribut _ loading (Alter-

nate Ii) is in very good agreement with the experimenL,, data as is Alternate I.

The origial distribution, aiso now shown, iowever, sh 'is large ,iriaLions. The

straight wing case exaggerates these variations because Lie contribution of
every wing lifting surface element occurs on the body surfa-e in that sho'k,

space lying between the root chord leading and trailing edges. There is a

negative dr". + the longitudinal loading which is due to the fuselage ir ;er-

ference ele,.%,.. These interference elements react to the upwash generated

at the body G-c. to the bound vortices on the wing.

The last two correlations of this section are found in Figures 33 and 3A.

The experimental and calculated longitudinal loading on a transport aircraft
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are coiparedi for two values of Mach number. In both cases ihe redistributed

loadinas are used for alternate II. The agreement is good especially

for the M = 0.6 case. At the higher Mach number it may be that shock waves

have interferred with the flow at te point near the wing root trailing edge,

where the exp:rimental data takes a sharp jump.

3.3 T-Tail Fuselage Combination

Zwadn 5 2,13 has deveioped a kernel function technique for T-tails. Of

particular interest are the span load plots of Reference 52 for a T-tail

tested with ooth 6 ground plane and a fuselage. Figure 35 presents a compari-

son of spanwiso loading as calculated by the Present Method, by Zwaan and as

determ .ed experimentally for a T-tail in yaw. Resulti for the Present Method

are given both for the T-tail with ground plane arid fuselage. The experimental

data are given only for the T-tail with ground plane. Difficulty was experienced

ir interpreting Zwaan's results. in Reference 52 a symbol j k I was

giien as the absolute value of the loading. This symbol was not defired in

Lhis .-ference. integration of experimental pressure data indicates that Ikl

is (cc)/(Cc ), where C is based on the total area of the vertical fin.
y y

Using this definition, the correlation of the data with the Present Method

for the vertical stabilizer is good. (Refer. to the calculation of the Present

Method marked "Ground Effect.") Both the absolute magnitude and phase angle

compare well. if the same definition of Iki holds for the :iorizontal stabil-

izer, ther there is an inconsistency in Zwaan's calculation as oresented in

Refe-encE 52, r;gu-e 8. The jump in IkI on the vertical fin at the intersec-

tion of the hoiizontal stabilizer should be twice the value of k at this

intersection on the hori7ontal stabilizer. if the area of the horizontal

Ist stabilizer is uscd in the definition of Cy thtn Zwaan's calculated results

become consistent. (The value of Iki on the Lorizontal at the root then

becomes approximately 0.415 while half the juiip n the vertical is about

C.425.) The new defirnition for both Zvaan's calc.lation and the experimental

data are used to give the results of Figure 35 for the stabilizer. The agree-

ment is good.

Thie effects of using a ground plane in place of the fuselage are shown in

Figure 35. The tNo calculations, done using the Present Method, show that the

g'-ound plane increases the loading substantially, both on the vertical fin and

horizontal stabilizer.

92

i



Experimental data have also been obtained for the T-tail atid fuselage in

steady flow (yaw). The shape of the fuselage was taken from a small sketch

given in Reference 52, Figure 12. This sketch is reproduced in Figure 35.

Figure 36 shows a similar sketch with the addition of the idealized fuselage

that is used with the Present Method. The results correlate well except

near the fuselage.

3.4 Wing and Tip Mounted Nacelle Combination

The only experimental data that have been found for a wing/body configu-

ration in oscillatory mot4on is that reported by Cazemier and Bergh5".55, 56.

A wooden model of a low-aspect-ratio wing, fitted with a large wing-tip

nacelle was tested over a wide range of frequencies. The wind tunnel Reynolds

number was low, Re = 4.7 x 106/meter, and the model was about one meter in

semispan. The test was set up to read the lifting pressure

[Cp (lower) - C (upper)] directly. The pressures were transmitted from

the model through calibrated tubes. The tubes were calibrated to eliminate

the phase shift caused by the transmission time required to communicate the

pressure from the model to the pick-up point.

An extensive correlation of the Present Method with this experimental

data is presented - since it is the only data of its kind available. Figures

38 through 57 are devoted to this correlation.

Figure 37 illustrates the idealization of the two configurations con-

sidered, a wing alone and a wing/nacelle. The wings in the two configurations

are slightly different. The first wing strip, in the wing/nacelle configuration,
is itissing on the wing-alone configuration. The last strip on the aileron is

filled in for the wing alone conf4guration. The interference elements are

shown on the nacelle; however, the slender body elements are not. On the wing

the inboard control surface is called the flap and the outboard control surface

is called the aileron. The pitch and roll axes are presented in Fi.iure 37,

as are the stations at which experimental pressures were taken.

A comparison of lifting pressure for the wing alone in steady pitch is

given in Fisurd 38. The experiment&l data lies above the calculated results

for all stat3ns presented. This is very extraordinary since experimental

data usually lies below the cahculated results. Normally the wing will be

less effective as a lifting surface due to the action of viscosity. The
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reason for this peculiar behavior is not known. A similar comparison for a

deflected flap is shown in Figure 39. The correlation is good and shows the

correct relationship between calculated results and experimental data. A

further comparison for a deflected aileron is given in Figure 40. The correla-

tion is not quite as good as for the flap.

In all of the comparisons the pressures are normalized as follows:

ACp AP/qB

s = 1.097m, plunge

pitch

B= 6f ,flap

6a  , aileron

,roll

where a, 6f 6a' and @ are the angle-of-attack, fiap ankle, aileron angle

and roll angle. The reduced frequency is based on c = l.0S,'r. 'i-cr both the

wing alone and wing/nacelle cases. The redured frequern as deiiied in

References 54, 55 and 56 is uZ/U , which is twice -s iarge Es that defined

in this report, a/2U.. Thus, reduced frequencies of 0.5 and 1.0 listed in

the figures of this report represent frequencies of 1.0 and 2.0 ir the nota-

tion of References 54, 55 and 56.

A comparison of lifting pressures for the wing &'one oscillal.ing at a

reduced frequency of 0.5 is given in Figure 41. The r.al part of the liftinq

pressure for pitching motion is very similar to the steady case. The correla-

tion at this reduced frequency leaves something to be desired, especially for

the plunging case. Pressure plots for rolling and aileron motion are given

in Figure 42. The case of rolling is very similar to that of plunging, as it

should be. The aileron correlation is good. Figure 43 is tie same as 41

except the frequency is 1.0 instead of 0.5. Surprisingly, the agreement

between data and calculated results is better at this reduced frequency (1.0)

than it is at 0.5. The same comment can be nade of the plunge case shown in

the same figure. An extra station is included for the pitching case to

compare Laschka's method57 with the Present Method and the experimental data.

Laschka's theory (as read from a very small fiq'ire) is given for strip number

5. Essentially, the results by Laschka are the same as the Present Method.
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A comparison of pressu'es for rolling and flapDing is presented in Figure 44.

Again the correlation is somewhat better for the reduced frequency of 1.0

than it is f..r 0.5.

The above comparisons refer to the wing-alone calculation. These were

presented so that the nacelle effects present in the nsxt set of comparisons

could be properly assessed.

The lifting pressure distribution for the wing/nacelle at station 2 is

presented in Figure 45; both calculated results and experimental data are

shown. The comparison is as good as the wing-alone case. A comparison of

lifting pressure for pitch, plunge and roll at a reduced frequency of 0.5 is

given in Figure 46. Generally, the agreement between the Present Method arid

experimental data is better than for the wing-alone case. As much cannot be

said of the agreement at the reduced frequency of 1.0. Figure 47 presents

this comparison. The agreement between calculated results and experimental

data for pitch is good, while that for plunge and roll is not as good. In all

cf the results where the agreement is not as good as it might be, there seeos

to be a phase shift Qf the results.

The pressure plots just aiscussed are presented to compare experimental

and calculated chordwise loadings. In many instances, a comparison of these

two for the span load or lift coefficient distribution is more enlightening.

For this reason, the experimental lifting pressure data avdilaLle in References

55 and 56 has been integrated to give lift coefficient. The nethod of integra-

tion was to connect the experimental data by straight lines and integrate by

pl 'an i rmeter.

The fir... of the lift coefficient distribUtior comparisons is given in

Figure 48 for the steady case. The upper curve gives a comparison of lift

coefficient, as calculated by the Present Methud, and as determined experi-

mentally for the wing alone case. The agreement is generally nood except for

the strange property that the experimental data lies above the calculated

results. The lower curve presents a similar comparison for the wing/nacelle

case. There are two curves marked "Present Method." The lower curve is the

result of using the u.ual method where axial elements in conjunction with

images are used to model the flow. The upper curve results were obtained
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after lifting surface elements were placed on the body surface (in conjunction

with images). This upper curve is in better agreement with the data. The

rn'ults of the upper curve are obtained at the cost of doubling the number

of unknowns in the problem. Thus, accuracy and efficiency must be balanced

by the user of the Present Method. Also shown on the wing/nacelle (lower) plot

is the wing-alone case. There is a very large difference between the wing-

alone and wing/nacelle lift coefficient distributions. The Present Method

goes a long way toward predicting the fuli effect of the nacelle even when

lifting surface elements are not placed on the body surface.

At a reduced frequency of 0.5, the comparison between calculated results

and experimental data shows good agreement for the real part and poor agreement

for the imaginary part. Figure 49 presents such a comp&rison for plunging

and pitching. A comparison for aileron motion is given in Figure 50. This

figure shows that the aileron is not as effective aa predicted, espeically for

the imaqinary part. The comparison of lift coefficient distribution for a

reduced frequency of 1.0 is given in Figure 51 for roll and pitch. The agree-

ment between calculated and experimental data is worse for the real part and

better for the imaginary part when compared with the results at the reduced

frequency of 0.5. The results presented in Figure 52 are of interest when

compared with those of Figure 50. In Figure 50 the experimental data lay

below the calculated results for both real and imaginary parts. In Figure 51

the real pa-t of the data lies above the calculated results while the

imaginary part lies below.

The next set of comparisons is for the lift coefficient distribution fur

the wing/naLe'le combination. One peculiarity of these plots is that there

are discontinrities in the distributions at the root and tip of the wing.

These -re caused by a discontinuous chord length at these Tocations. Refer-

ence back to Figure 37 will show i.nediately these planform peculiarities.

The agreement between calculated and experimental spanwise distribution

of lift coefficient for the wing/nacelle combination is about the same as that

for the wing alone. Figure 53 presents these results for plunge and pitch

motions. Except for some scatter (rtation 2) the real parts are in close agree-

meint while the experimental data lies below the calculated results for the

imaginary part. The comparison at a reduced frequency of 1.0 is shown in
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Figure 54 for rolling and pitching. Again the comparison is about the same as

the wing-alone case.

In all of the comparisons presented for the wing-alone and wing/nacelle

there seems to be a phase shift between the calculated results and the

experimental data. The phase shift seems to increase as the frequency

increases. The reason for this is not known. It is felt that the agreement

should be better, espeically for the wing-alone calculation, since similar

comparisons have been made in References 10, 12 and 13 and show good agreement.

Further analysis of the lift coefficient data has been done in an

attempt to isolate the nacelle effect on the wing. Specifically, the wing-

alone distributions have been subtracted from the wing/nacelle distributions

both for the calculated results and the experimental data. Some irregularities

are introduced when this is done since the 4ng without the nacelle is not

exactly the sare as that with the naceile. Some of the effects, then, will be

due to this difference and not due to the nacelle.

The steady flow results for pitch are given in Figure 55. The experimental

data lies generally between the two approaches of te Present Method (one with

axial body elements, one with surface elements, both with images). The same

type of comparison is given in Figure 56 for a reduced frequency of 0.5. The

Gata shows scatter fur the real part both for plunge and pitch although the

agreement is excellent near the wing/nacelle intersection. The agreement for

the imaginary parts for plunge and pitch is not very good. When the reduced

frequency izo increased to 1.0, the correlatiun for the real part improves,

generally, as F iown in Figure 57. The imaginary part, however, is not as good,

especially for pitch. Also shown in Figure 57 are results obtained from

Part I of this report (also, Reference 18) for the wing in pitch. The effect

of the nacelle in these results is very large. This discrepancy may be due to

the fact that a slightly different wing planform 4as used in Part I. Specifically,

the gaps at the wing root and tip are not present in the calculation presented

in Part I. Also, the nacelle cross section was represented by a rectangle.
This rectangle was lIvrge enough to envelope the nacelle. Thus, tihe end-plating

effect was larger.

97



3.5 Wing-Nacelle-Fuselage Combination

A good examp'e of a complex wing-nacelle-fuselage combination is found

in the B-58 bomber. Data were made available from General Dynamics,Fort Worth

Division, through Dr. R. G. Bradley. The data are For configurations

with and without nacelles. A detailed description of the configuration

is found in Reference 58. The idealization of this configuration for calcula-

tions by the Present Method is given in Figure 58. The fuselage was cambered

as well as the wing. The wing camber was restricted to a conical region at

the leading edge. This region is easily identified in Figure 58 as the one

containing the conical rays emanating from a point on the x-axis. The camber

is approximated by three constant slope conical wedges. A more conventional

idealization is developed for that region of the wing without camber and for

the pylon. The outboard pylon is omitted since it was thought to be too small

to effect the calculations. There is a gap between the wing and outboard

nacelle. The outboard nacelle is at a negative incidence and therefore the

leading edge is considerably lower than the trailing edge where it attaches

to the wing. The average gap at the center of the nacelle is the one shown

in the figure. The small arrows on the fuselage and nacelle axes indicate

the directions of force (and doublet orientation) that are allowed for the

calculation. The interference elements are shown on the fi.lage and nacelles.

Shown on the fuselage alone are the slender body elements indicated by tick

marks on the actual fuselage shape.

A comparison of the Present Method with experimental data for the configu-

ration with nacelles is presented in Figure 59. Specifically, the span load for

the wing at 4 deqrees anqle-of-attack (in addition to the conical camber) is

presented, The experimental data lie above the calculated values. Similar

results were obtained by Bradley and Mil'Ier 21 for the B-58 bomber. The cause

of th4s is found in the v-ry high sweep of the leading edge. As is well known,

wings with large leading edge sweep angles develop a leading edge vortex which

causes an increase in the lift. Figure 60 presents a similar comparison for

the case of the wing without the nacelles. Again the leading edge vortex

increases the lift over the calculated value.

To determine the effect of the nacelles on the wing span-loading, the

calculated results of Figures 59 and 60 are replotted on a single curve
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in Figure 61. A calculation was made in which the nacelle diameters were
doubled. The results of this calculation are also shown in Figure 61. The

obvious conclusion that is drawn from this Figure is that as the nacelle

diameter is increased, the lift on the wing is increased. The nacelles -s

well as the pylon tend to prevent spaijwise flow and in this way increase

the lift.

The span load on the B-58 wing in oscillatory motion is given in Figure 62.

Specifically, the aircraft was made to pitch about the wing "apex" (determined
by an extension of the wing leading edge to the center of the fuselage) at a

reduced frequency of 0.5 (c= 19.15 in.). The normalizing chord length used

for the span load is cR which is the root-chord length (34.7 in.). These
dimensions are for the wind tunr.el model. One further calculation is pre-

sented i:. Figure 62. The aircraft is made to operate in ground effect, at a
height of 10 in. abuve the ground. The height/root chord ratio is 0.288. The

effect of the ground is appreciable especially for the real part of the span

loading inboard of the pylon. There the load is nearly doubled. Also, nearly

doubled for the ground effect case is the computing time. The reason for

this is th-t the kernel is evaluated twice as many times in the ground effect

case. Each sending point on the aircraft has a counterpart in its ground

effect image.

The span load calculations presented in Figure 62 are for unit angle of

attack, no cambering modes are present. For this case a simple idealization

of the wing is used.

The fuselage loading associated with the unsteady case (out of ground

effect) is presented in Figure 63. The original loading for Alternate II is
presented. this casp the original loading and the redistributed loading

should be very close because of the slenderness of the fuselage. The major

contribution to the fuselage lift is obtained in the region of the wing

(indicated in Figure 63 by a heavy line lying on the x-axis). Il is inter-

esting to note that the point of maximum loading for the imaginary part lies a

considerable distance aft of the point of maximum loading for the real part.
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The loading on the nacelle is considerably less than that on the fuseiag, .

Figure 64 shows that the maximum lift (or side force) coefficient is about

6.0, while Figure 63 shows the maximum for the fuselage is about 30. Figure 64

presents the vertical loading on the inboa:'d nacelle and the horizontal load-

ing on the outboard nacelle. The load distributions given in Figure 64 have

not been redistributed and are the original ones of Alternate II.
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4.0 CONCLUSION AND RECOMMENUATIONS

4.1 Conclusions

A method for predicting oscillatory loads on very general configura-

tions has been developed. Configurations may include a combinatie,, of any

or all of the following components: 1) lifting surfaces such as wings, pylons,

stabilizer, fin, etc., with arbitrary dihedral, 2) partial or full span

control surfaces and, 3) bodies such as fuselages, nacelles, stores, etc.

with elliptic cross-sectional shapes. The operating conditions are also

very general: 1) all frequencies of practical interest and all subsonic

Mach numbers, 2) symmetry and ground ecfect, 3) mutual interference of lifting

surfaces, and 4) multiple modes of oscillation (described by polyh'mials).

One of the main features of the Present Method is the efficiency with

whicn these configurations and conditions are handled. With the kernel

function techniques even simple plane wings present time consuming

numerical difficulties. If it were possible to extend the kernel furction

method to the statis of the present method the computational effort might

be excessively large.

The effects of varying some Df the important parameters irvolved have

been studied. Specifically the effects considered are those of: 1) body
radius, 2) cross-sectional aspect ratio, 3) frequency, 4) wing position

3n the fuselage, and 5) end plating effects of a body. The conc 1usions

drawn from these studies are outlined below:

1) The body radius has two distinct effects: one is due to the

flow field associated with a body at angle of attack and the other is

a ssociated with interference. The fuselage angle of attack effect increases

the wing loadirg as the ratio of fuseiage didmeter to wing span is increased.

The fuselage interference effect shows variations as the radius range,

from zero to infinity but is the same at the two extremes.

2) The interference effect of fuselage cross-sectional aspect ratio

(ratio of b/a where b = semi-height, a = semi-width) is monotonic,

reaching its greatest value when the fuselage is a vertical slit b/a
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The angle of attack effect is just the opposite reaching a minimum when

b/a = -. The iniage system for elliptic cross sections starts to fail

when b/a is greater than 2.0 or less than 0.5.

3) The effects of frequency for wing-body combinations are very

similar to the wing alone case.

4) Placing a wing high on a fuselage of elliptic cross section

tends to brinq the left and riqht winq halves closer togethpr This

increases thp interference effect of the body. The angle of attack effect,

however, is reduced.

5) The Present Method predicts the end plating effect of a body very

accurately for a circular cross section (b/a 1 1). However, when the

ratio of b/a is near the value of 2.0 (or greater) the predicted end plating

effe,-t starts ,o fall Delow the correct value. There are two reasons for

t's behavior. The first is the fact that the image within the ellipse is

terminated at its centerline. The second reason is that the interfrrence

elements cannot account for an anti-symmetric flow across the body cross

section.

If conditions or configurations are simplified, then other methods may

be used to compare with the present method. Cases which involve only lifting

surfaces may be handled by the methods of Laschka57 and Zwaa.s 2 . Comparisons

of thesF. methods with the Present Method show good agreement. For the steady
case the theories oi Woodward13 and Labrujere2 0 may be used for comparison.
LoddS Pe E" by the Present Method faIl elightly helow the thick winq theory

of Labrujere but lie slightly above those of Woodward.

The Present Method is also compared with the method of Part I of

this report. The method of Part I employs lifting surface elements on

the body surface to account for the body interference effects. The results

are highly dependent on the idealization. if the cross section is

represented by orly a few defining elements then the results can be

inaccurate especially for unsteady flow.

Several general conclusions can be made about the comparison of the
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Present Method and the method of Part I. In steady flow the loading, as

calcilated by the method of Fart I, usually falls s"htiy below that

calculted by the Present Method. As the number of body surface elements

is in,reased (for the method of Part I) the agreemen between the two

methods improves. For unsteady flow the situation is more cobiplicated.

There exist differences between the two methods especially near the wing-

fuselage intersection. If the representation, in the method of Part I,

is crude then variations in the results occur that do not exist in the

results of the Present Method. In some instances a third calculation was

done in which both images and lifting surface elements were used. This

calculatinn confirmed the results of the Present Methcd i, most cases.

Tne exceptions to this were cases involvin, bodies placed at wing tips.

The total loads and moments on bodies, as calculated by the Present

Method, are very accurate. The spanwise variation of lift coefficient agrees

very well with the method of Part I, Woodward's 19 metiod and tne method of

Reference 8. The longitudinal distribution of load along the body surface

is not as accurate for Alternate II. The reason for this is that the total

load on the body due to one lifting surface element is found and lumped at

the same longitudinal location is the lifting surface elemenc for this method.

The longitudinal distribution on the body arises then only from the longi-

tudinal distribution of lifting surface elements. A redistribution of the

load, based on an approximate procedure, increases the accuracy under most

conlitioes.

Many comparu Of s o the Present ...... ti d w i t

experimental data are presented in this report. Some of the resuitL are

apparently contradictory. For this reason the: results will be discussed

for each of the experiments.

00
The data of Martina for a wing-fuselage combination agrees very

well with the results of the Present Method. Similar data were obtained

by Krner 5 1 for low Reynolds Number and %w Ma(.;i Number. rNe data show
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a characteristic loss of effectiveness relative to the calculated results

which is the direct result of the boundary layer. Specifically tne boundary

layer is much thicker on the upper surface and effectively produces an

"uricanbering" of the wing. The bcundary layer is also very thick at the

wing-fuselage intersection and thus it is not surprising that the loss of

lift is found to be greatest there. The redistributed longitudinal loading

on the fuselage is in good agreement with the experimental data.

The only experimental data found for a wing/body combination in

oscilatory flow were reported by Cazemier and Bergh 54' 55, 56 who considered

a wing with a tip-muuvrted engine nacelle. These datz, were obtained at low

Reynolds Number and low Mach Number. For reference purposes some of the

dat6 were obtained for the wing alone case. The experiment for tile wing

alone in steady flow was found to lie slightly above the calculated results.

This is a very strange result for this configuration and casts some doubt

on all of the comparisons. Lsually the data are below the calculated results.

For the unsteady cases there seemed to be a phase shift between the data

and calculated results. Also plots are presented to isolate the effects

of the nacelle. Ir g-neral, the real c. in-phase components of the calculated

results and experimental data agreed wr.l but the imaginary parts did not

agree as well. Generally speaking, thf comparisons of calculated and

experimental chordwise loading showed good to fair agreement. The

functional shapes of the pressure as determined experimentally and as

calculated are in good to fair agreeme,,t even though the integrated value

cf lift may, in some instances, not be.

Finally, a comparison is made between calculated and experimental

span loading for the B-38 bomber. The leading edge sweep of the B-58 is
600. Because of this a leading edge vortex is formed. This causa the

experimental data to lie above the calculated results. The Present

Method does not account for this nonlinear effect.

4.2 Recommendations for Further Work

The recommendations for future work fall into three categories:

1) improved efficiency, 2) improved modal representation and, 3) improved

body representation.
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A large amount of time is expended in calculating the kernel function.

The kernel is evaluated at three points on each lifting surface element*.

For each element there may be several images, a symmetry plane and d ground

effects plane. Efficiency would be improved if appropriate far field

formulas are used for receiving points that lie at a large lateral distance

from the element. A second and irore radical method of improving fhe efficiency

is to cover the lifting surfaces with trapezoidal vortices. The trapezoidal

vortex devel)ped in the Present Method is simple but not very efficient.

A new formula could be developed for the trapezoidal vortex that does not

require the evaluation of the complicated kernel. It woLvId be simpler

because the trapezoidal vortex possesses no wake and thus the expres;ion

contains one less integration. The only place where a wake is required is

at the wing trailing edge.

The second recommendation pertains tj an improvement of the aircraft

modal representation. The polynomia! cppr'oach lends itself to scientific

investigation where modes are simple. Wlhen the modes become complicated

however it may be desirable to incorporate other more practical modal input

methods. Several other methods have been outlined in Section 2.2 and will

be repeated here. One possibility is to injut a set of modal deflections

at various spanwise stations along the wing and use a spline fitting technioue

to interpolate for intermediate values of deFlections and slopes in both

the span and chordwise directions. A second method would be to generate

an aerodynamic influence coefficient matrix [AIC] for such a set of structural

deflection points.

The third recommendation deals with a series of improvements

of the body representation. The longitudinal distribution of load on the

body surface could be improved. Currently the unsteady pressure equation

*The value of the kernel at the outboard edge of an element is the same as

the kernel at the inboard edge of the element on the next strip outboard.

This fact is taken into account requiring that the kernel be evaluated

only twice per element.
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is integrated first longitudinally and then around the cross section for

Alternate II. If possible, this integration procedure should be reversed

for elliptical cross sections sc that more accurate distributions could be

obtained. The computational effort would be increased but it may be worth

the effort. The theory for circular cross sections has not been automated.

It is anticipated that it will furnish more accurate results for bodies

with circular cross sections.

Currently, the flow field due to a body is generated by one or two

singularities placed near the body axis. The resulting cross-sectional

shapes may not represent the actual body shape accurately. The flow field
crse to the body is highly dependent on the details of the shape of the

cross section. It may be worth while to investigate the possibility of

improving upon the current idealization. A more refined method of accounting

for the end plating effects of a body would be appropriate. Specifically, a
mnre complicated singular;ty should be developed to account for an anti-

symmetric flow to the body surface.

The entire problem of wing-tail interference should be reconsidered.

The recommendations of Section 2.5.8 could be implemented along with a

method of accounting for wing wake convection and roll up. One of the

recommendations of Section 2,5.8 is to use two different average fuselage
diameters. A dianeter appropriatc for the %ing is used for wing-on-wing

and tail-on-wing interactions. A diameter appropriate for tne tail would
oe used for wing-on-tail and tail-on-tail interaction.
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APPENDIX A. BASIC SINGULARITIES

The basic differential equation governing th potential ,n compressible

isentropic flow is:

7' z -- 2 - A
a

2
where I - M fe _,ubsonic flow and where 0 e- or

Oscillatory flo,

The first step in thc solution of tA- I) is to define Y a, follows-

Tlhli equation reduces (A-i) tc

1I -I - 2, (A-3'

xx  P2 ( yy tzz x y 
M

when X Wo 2 UO (A-4)

An elementary source solution, 4", for (A-3) for outgoing waves is-

_e -XR (A-5)

R

who re

2 2

R (x-a)2- 3 r

r (y-fl) (/-_)
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Applying Green's theorem to the lifting ,urfaces using (A- 5)as tie lei: eonlat

solutlon gives:

I ff (A-o)

S
" here - repiresents~ a .-tl' -ace over ,.-hich i-. distributed and where

c ,"/01N represents a point oscillatrv conip -essibh1, dublet (oriented

normal to the surface (N ). Using the i-elati)o betx ,en Y and g given

i (A-i), in Equation (A-t,) gives the final e::pie ssion toi in te rrn.z of ,5 .

S 1 A--Q ei x--N- J ds (A-7)

-1 IT ff

,Since iX(M(x-{) -- R) = -- (x-L) --- (x- - MIU)

UCO U110

equation (A-7) can be rewritten as-

2(X. Z) -. ff K1(,ry ds (A - )
S

_ (x- - MIU)

- c

upper - 1 oer

'I his I. tie final expression for the potential in term. of the potential jump

(list il)ut ton on the surface "S' . The term L rcpr( sent 3 a point :double',

oriented normal to the surface (in ine N direction).

Th expiesi~n f 'r the lineari/ed pressu,'e is

( <4 1 ) (A-0
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I th t rms q) and 0 each satisfy Equation (A-1) The pressure

octffl lent Adp then satisfies the equation also. To obtain a soluti ',

for C simply replaceiT by Cp in Equation(A .3).

p p

C Y. 70 e U, d S IA i 0S1), Tz) i f PU(,lr)eU d

The minus sian in front of AC nidicates a difference in the ce'inition ofP
A,i. e., the difference between upper and lower surface quantities. For

-upper', -- lower)

However for C
!p

A -c
p p (lower) p (upper)

{p

A C - 4 UA~ (A-I)

Equation (A-10) will give the pressure field anywhere in the fluil

due to a pressure loading d;stribution on the surface "S". Normall¢ ACp
ipI is unknown. An ,ntegral equation for AP can be formed if an expression

0
,'elatlhg potential or ve'ocity to AC can be foundP

(on, ,der th? (xpression for the pressure (A-9). In terms of Ld the

j)FCl' tI rU 1"31.

-k2 \M x
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Define an accele ration potential such that

x

The expression for C is then:
p

p 2 all e UO (A 12)

Placing (A 12) into (A-10), on the right-hand-side gives:

Uc CO U' CO e

X - 8T A ,p (Z7 ,) e -N - ds
$

Integrating both sides of this equation with respect co x from - O to x

gives:
x __

U o f ir 
f(U, 

2 - M R )

(x, y, z) -2(--o - 8 AC - dx ds

S

where ,c is the dummy integration variable, and S2 (-.' is zero. It

an easily be shown that
i _. x

UCO
2 =FP e (A-t3)

Substituting this equation in the expression for z - (-co) and making

the change of variable t x - gives: k

U f ACrK ds (A 14)

V - 0- " R -dtS

Z2 9 R r



The boundary conditions on the body surface can usually be givcn in terms

of velocity at the general point x, y, z in the direction normal to the

surface

w VO

Uw- u87 ff!4- K, ) (K-1i)

K - VKO. -

The term F is the usual kernel function.

It is often stated that if the acceleration or pressure potential is

used (Equation (A-I 3) or (A-14) ) then the wake need not be considered

since the surface, S, over which the integration is performed does not

include the wake. The wake, -4' coursc, is preBent. In fact each pressure

doublet (of strength AC ) contains its own wake. The wake is .n actuality
p - -O

a line doublet of strength e --- extendig downstream from the

point o' to infinity. This is easil¢ proven using Equation (A-81. The

term L is the potentlal field due to a unit point doublet oriented in N

direction. The potential due to a continuous distrlbution of point doublets

of strength e gives-

which upon substitution for L becomes
{ ~~~~j.L e (U-o L(-__-q_-,,Mwd

R /

I
CO 1i-1(x - -MR)

-ic° ( -[)_oJ ON e R ,dA
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Making the transformation t x - gives

-( x X-o .C iU 2 (t-MR)

+ e x N C )dt_ FN R

This expression is just Kq) (Equation(A-14)). in summary then

I0

oo Lpd = K0 (A--16)
0

This proves that the point pressure doublet is in actuality a line doublet

of varying strength (e U o , )extending from the point o to down-

stream infinity. See Sketch A-i.

X,,

! x' ' -''"/ --DOUBLET WAFE'-- •

0 lo 0 0 ,r

'--- POINT PRESSURE
DOUBLET

STRENGTH OF DOUBLEI WAI\E e

SKETCH A-I
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Modified Acceleration Potential Approach

One further type of singularity that will be of use is the modified

acceleration potential. Equation (A-13) gives

I- Xo

or for surface distributions

If a moditied acceleration potential is introduced, then

2- e(A-17)
Uo

where E is a known function of . Solving for Ad in terms ofL-Q gives:

S-1 I'll - ( - ac)1* A 0 e " (A - 18 )

Placing this expression into Equation (A-8) gives:

a 6e Qlx c Ld, ds

S

(P f 8-AI[ 5( LQ -s (A-19)
J J

where

L. =Ue UC( c L(b (A-20)

The pressure AC may be found using AQ in Equation (A-12) as follows:
I ' c \ .-

A C Q e - U "  (A- 1)

where?
AQ Q lower " Qupper
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Axial Distributions

Thus far onl; surface distributions have been considered. In order
to solve body problems axial distributions of singularities must be used.

Consider the three types of surface distributions studied so far: velocity

potential, pressure and acceleration potential.

= J A4 Lqds (A-22)

8"- "Kds (A-23)

- Q LQ ds (A-24)8 8rr f'

In order to convert th-se into axial distributions the surface distributions

must be considered as lumped into a line at '= q.1 t a . Thus

1 : 1 a  - ra) ap(a ) (A-25)

ACp 5(Ur a h- a a  f( (A-26)

AQ 6(- - a) o() (A-27)

where 6(Tl - -qa Y - a ) is a delta function acting at the body axis Il a ' ta

with the units of length. Placing these values into the surface integrals

above gives:

i - 4 (T t L ( -H a  - d9 (A-28)

= J K() . (r,- T'a,' -a d9 (A-29)

= f g() LQ(d- S (A-30)

As the frequency goes to zero ( ) becomes pL(g).

li13
LQ - ~
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APPENDIX B. DISCRETIZATION OF SURFACE

AND AXIAL INTEGRALS

Equations(A-22) and (A-25) may be discretized as follows:

- a_L iL~ds ,surface (B-1)
47r s fis--1 A S S

= "- b s  b(' -'d : axis(B-2
1r sAL T1 a

s

The terms AS and A indik ate small elements of area and axial length,
s s

respectively. In steady flow the integral over the small area AS s produces

a vortex quadrilateral, i. e. , a vortex that lies along the parameter of the

element. This type of element possesses no wake; therefore, for a lifting

surface, a wake must be added. The integral over a small axial element

produces a line doublet the length of the element.

Equations (A-23) and (A-26) may be discretized as follows:

te 14co A14)d surface (

8 1 Tr fs A4 K4(, = 1/4- 77 : 7a' a = a) , axis (B-4)

The term ArI indicates the width of the surface element in the plane of the
~elemen. The longitudinal integration is performed by lumping the value

of the integrand at the 1/4-chord point of the element. The length of the

*element isA for both the surface and axial line integral. The 1/4-chord

line of L~e element may be swept, therefore,

i {I/4 =  1/4 (1

In steady flow the surface integral produces a horseshoe vortex whose bound

portion lies along the 1/4-chord line of each element. This integral is the

basis of the Vortex-Lattice Method in steady flow and the Doublet-Lattice

Method in unsteady flow. The axial integral produces a semi-infinite line
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doublet whose origin lies at the 1/4-chord point of the element. The dis-

cretizationb given in Equations(B-1), (B-2), (B-3) and (B-4) ;re consistent

with each other even though a simpler technique was employed for Eqiations

(B-3) and (B-4). A system of vortex quadrilaterals covering a surface and

wake can be made into a horseshoe vortex system cove'ing only the surface

and vice versa. Similarly, a system of finite length axial doublets can be

made into a semi-infinite axial doublet system.

Equations (A-Z4) and (A-27) may be discretized as Jollows.

I E LQ ds , surface (B-5)

fs

I Y f LQ( 7= a ) d , axis (B-6)
s n a

1
s=l A4~s

The integrations over the small area and line segments could be performed

as they stano.; however, further analysis %,ill show thz these integrals can

be built up of expressions previously derived. Consider first the axis inte-

gral where the actual limits t1 and (leading and trailing edges of the

element A s ) have been introduced. Define the axial integral as Ir where
r f2sL 

d 

(B-7)Irs = Qr

s

Using the expression for LQ given in Equation (A-ZO) gives:

-2 ( - Yc
Irs =fs e iM L4 d

s

The term c is a known function of . Define c as the center of the ele-

ment s, where

Sl +  zB
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The function 4c (4) is then a series of step functions. The integral Irs
may be split into two parts:

I 
.s w 4 _

rs 1

(.O 4sC -!!(4

Sz

Reference to Equation (A-16) shows that

e s Led r K(x- 1 " " " )

ss

s (13-10)

ss

IZ e L~,d4 = t x -4 .1' "

Thus 1U e N (x4 1 u,..)-

COs -e-!! ( (x - ) -Ib( -41 )

s s (B-I

The fterms poss, s wakes but the inegral I must not possess a wake.

The wake of t-he first term in Equation (B-il) is cancelled by th.• wake of

the second term. This equation represents a short segment of doubletstrength, which raries ike e-Uo( 4- 49, that lies between and 4Z

(,n Sketcha 2. 6-] the double arrows indicate that two equal but opposite

wake 3 trengths exist at one point. ) Tihis expression can also be used in
the doubh integra of Equation (B-5).

"- 4T i A QJirsdI , surface (B-lZ,

axis (B-13)
,rrrs
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The surface integra!, given in Equation (B-12) by the int.egral of ;

represents an unsteady quadrilateral vortex composed of two unsteady

horseshoe vortices (see Sketch (B-I)). If Equation (B-1l) is placed

into Equations (B-IZ) and (B-13) and it is assumed that At is not a

function of T, then

s

41r S=l e s . . . ) dl

(B-14)

ex 4z, . . . dI , surface

e~ If,'

1 L e K¢(x- 1

)'_
4Tr .~ x -(B -15)

'e 2 .. 1 axis

The first integral of Equation (B-14) i en unstea 'y horseshoe vortex lying

along the Linc = ,' while the second integral is on u.nsteady horseshoe

vortex lying along the line 4:= (compar Equatiorni (A-40) and (A-41) with

(B-3) and (B-4)). If the element length A s does vary with - it is an easy

matter to place it within the integrals and hirdle it in the same way as K.

itself Is handld.
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II

1~' -QUADRILATERAL

VORTEX

CANCELLED

SKETCH B-i.
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APPENDIX C. IMAGE POINTS

Circular Bodies

The flov, about a circle in the presence of a singularity may be solved

using Thompson's Circle Theorem (see Milne-Thompson,Reference (43).

This theorem states that if f(Z ), (7 = y + iz) ,is the onset flow complex

potential of the singularity then the total flow potential is given by F(Z ) as

F (Z) = f kZ) + Y(aiZ/) (C-])

if the circle is located at the origin of coordinates. The term f(a IZ) is

the flow necessary to render the circle a streamline in the presence of

the onset flow f(Z). The term f(a /Z, ) is the potential due to the image

singularity. If f(Z) is the potential due to a vortex located at then

iTr

and

f(a/Z) In a

i- In (Z 2 I

The first log term is the usual image and the second term is a vortex

located at the center of the circle. This vortex is expendable since it

does not affect the flow normal to , the circle boundary. The result is:

image 2 Z i n
Potential f-a /n (Z--2a___)
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The image vortex is of opposite sign of the exterior vortex and the

location of the image vortex is at +a I

Image Strength - (C-2)

z/
Imp.ge Location a P2

The sketch shows the image location

z,

a

'Oi

SKETCE C-i

Applying the Circle theorem for the point source singularity gives

for the image potential:

(2 2 (a ) n ,l(i)

(a /Z) 2 z (Z - lZ -I

The very last Log term is a constant and may be ignored. The middle log

term may not be ignored s;nce it affccts the flow about the circle. it

represents a sink at the origin. The final solution for a source requires

two images; one at the usual image point an~d one at the origin.
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Image Strength = + Or

Image Location I first image

P2
(C-3)

Image Strongth = "
second image

Image Location = 0

The sink at the origin simply keeps the circle from producing a net out-

ward flux of fluid.

The doublet potential is

f(Z) 2 Zr

The image potential is

(a- (1 . (G-4)

If we wish this potential tc. go to zero at infinity then the '-dlowing constant

must be added:

_, Z

Adding C to :(aL/Z) gives:

I(a /Z) = - Ii I2 ()

Thu. for doublets

Image Strength - . a2/ -

(C-5)

Image Location (a /p 2)
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Elliptical Bodies

For any body other than a circle the image approach does not

furnish an exact solution. It mar however furnish usable appro.imations

if suitably modified. Borland, Reference (35), suggests a generalization

of the image approach, for vortices. through a transformation. Specifically,

the t-ircle-ellipse transformation is applied to the exterior vortex and image

vortex positions. The position of the image vortex. V with reference to

the exterior vortex ii, the ellipse or physical plane is

4 1 2- 2 2
r + K-- (- + 4KZ )Z

I r ( + 2 -4K)

a+ b
wher- r2

K2 1 2 a2

K 2 1(a -b)

where a and b are the .3emi-major and semi-minor axes, respectivel,.

This formula possesses a restriction on the location of the exterior

vortex. If the exterior vortex point . lies outside the ellipse

Z_ 12 _ 1 (0-7)

(rZ ~~IK~z+ (r 2  ).1 . r zr

then the image point will fall on the wrong Riemann sheet. Thus vortex

images may be considered only for vortices lying within the ellipse

given in (C-7). If E-0, i. 3. , a circle,the ellipse of (C-7) becomes

infinitely large and thus all vortex points may be considered.

A generalization of this approach for doub!-ts must include a

variation in image doublet strength in addition to the variation in location.

If a doubuic is constructed of two vortices of equal and opposite strength
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located at . and + A then there exists an image doublet located

at r and 
I + A Y

A= = +

r= 1 : -=,i . a

I+

If the limit is taken then

dtd . (C 8)

For a circle d I/d = - a"/ and this is exactly the solution given
in (C -) Differentiating Equation (C-6) gives:

+ " K + 4 ) 2

d 1 2 + 2 F-2± r ( -. 41(2) - 4K2

A second and more easily understood approach is to define an

eouivalent circle for each singula-ity doublet, source). The
equivalent cir,-le has the correct curv'aturc of th.c cilipse at a partiLt Ulr

point. SketLh C-2 shows an example.

193



z

b C

STrETCH t C-2

The curvature of the surface of an ellipse (1/1 ) i!;

2 2
I Id-y2 '  d z " CIO

a ds ds 2

d y -a cos b2

hr ds 2  (a 2 sin2 0 + b cos 2 0)

d 2z -bsin0 a2

dsz  (a 2 sin2 0 + b cos2 )2

wherc the angular measure 0 is defined implicitly as

v a cos 0

z = b sin 0 (C-Il)
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The result for 7 is

- (a z  sin ' ,e + b cos 0)13/Za ~(C-1 2)
ab

The vector to the center of the circle with radius 71 is:

c : r - n a

where 7 is the vector to the point on the ell-pbe and where the radius of

curvature is 7. The vectorn is the normal vector at the samye point and

is given as

n =(_ j+ d z
ds 2  ds 2

The result is:

_a2 b (b 2  2 3
c = 1 cos 0 sin 0 (C-13)

This curve is called the "evolute of the ellipse".
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APPENDIX D. LONGITUDINAL INTEGRATION OF THE SURFACE

PRESSURE, ON A BODY OF ARBITRARY

CROSS SECTION, FOR FORCE AND MOMENT

The expres-sion for the pressure field due to a point pressure doublet

is:

C(X, y, z) ; ' e ikM x . (e ' 1,R (D-l)

p 4r aN R

where 6A is the elemental area over which the load AC acts. The
p __

coordinates a, I I' define the location of the pressure point and N its

direction. Also,

') M

2 

2R f/ ( x-_2+ r Z3 r

This pressure must be integrated over the entire body to give the lift and

moment.

6Fo

-" f dx n . F ds (D-2a)

fi6Fd Cp 1F (q

________ Ir - x dx . ds (D2b)

'ci
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The term n . F is not a function of x since a constant cross section body has

been assumed. The vector *i is the outward normal to the body cross section

and has components in the y and z directions only. The vector i F denotes the

direction of F and is used to dete'mine the direction of M.

M = M (iF• k) + N (iF. j)

where M and N are positive nose up and nose right iespectively. it is

assumed, without loss of generality, that the origin is located at the pressure

doublet an; that the moments are taken about the origin.

Substituting Eq. (D 1) into (D-Za) and using the transformation t - x/pr

gives:

bF -AC 6A -- d-3
q 4Tr J .N i F ds (D-3)

where

e iXPr(tF2-l)dt

I f 't + 1

2t _ w~r -

Making the substitution Pu = t + I - Mt and ( X P r) P = k

gives:

-CO

et e-i k u (
f sign P(t d

f -ik u
- 2 e__ du =r [Y 0) + iJ (k)]

19uZ7i
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Pp

This is just the Hankel function of the second kind times iiT . Thus

1i 1 H (2) (D-4)0

wher e

w r M

It can be shown that Eq. (D-4) is proportional to the two-dimensional source

potential for the unsteady wave quation. A direct method of arriving at (D-4)

is outlined as follows:

co iXMx -i XR
e e dx

R

Consider the two-dimensional source potential

which is obtained simply by integrating the point source along a line from

o 'to + .Again mke the same transformation T x
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4 , - R dj0 i f XM(T + Ci

2-D (D-5)

4 Tr

The two-dimensional source solution is obtained from the two-dimensional

unsteady wave equation:

r 2 + rQ + 2 = 0 (D-o)
r r r

where oscillatory motion has been assumed. The source solution of 'D-6)

for outgoing waves is:

0 H () (_k) (D-7)
4 0

Thus fr3in (D-7) and (D-5) we obtain the results of Eq. (D-4).

Substituting (D-1) back into (D-3) gives the proper expression for the
force.

6 F OC 6 f9H 0(Z)(Fk) _L C 6A o@H°  -

= p iT- n 1 F ds (D-8)q4 T,;- (9N

where

OH22)
9H0 HkFk

- - I k)

Wk M a r T,~

ON U O N r r
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placing these into (D-8) gives:

-F AC 6A [r i ds -96 j(2)F)_ r n . i F ds (D-9)
q 2 Tr r

where i is the two-dimensional radial unit vector from the ,ressure poi-ntr

to a pont on the body cross section (see sketch D- 1) on whic a the circuit

integral is to be Lakn In the steady case (k - 0) the bracketed term approaches

unity.

N

( y.

Sketch D-1
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The expression for the moment is now considered,

ALC 6 A ~-m p I F ds (D-1 0)
q 4 ON mF

where

.O ik~pr (Mt -it z + 1

= D t ei (t - - dt

The term IM can be obtained from I as follows:

= r 01 (D-11)

iPr aM r=const.

Now i iI H() (0k) and Xpr = k/p ; thus

~' I(2)) ak
a i 7rH I ( (D-IZ)

k const. = const.

OkI OP3  M k

nt- '-a OM const. - P p (D-13)

=const.

Placing (D-13) into (D-1Z) and the result into (D-11) gives:

I = -r H1 () ( )
r NIiT H( )) (D-14)
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Placing this result into Eq. (D-1O) gives

-- A N5M p f rMil H 1(2) )] r" -n F- ds
=J-r-[ 1.'

q 4Or r

(Z) Flo (2) OH (2)
r- [r MTrl-1 ] = rMir H (k) + , 1 ]Or 1k

= rM'r [k H 0( k) ] 
(D-15)

The final expression for the n-orient is then:

fM [rp 6A % H(2) -- n - ds (D-16)

q Z T r

Ac 6A f (2) OH I(Z)

----- M [ + k-yr ]ir . N n. i F ds

In the steady case (k- 0) the bracketed term approaches zero like kink.

Higher Order Moments

The nth order mor-,ent is defin d as

6 Mn  AC 6 A 0-
- _. P .. () n.i ds

q 4a JON n F
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where

f n i X (MX -R)
=n  x e dx

-co R

( m) -p const.

Consider the second order moment; 8M /q.

a = 1.T MZ (2) k
aI iL k H ()

azi k IxM ' H (Z))- MZk H0() 7lo

a M 2  p p 3  1 p3-

1 =  -iTTrz (2'I. - M o(2)
-r (1 + M) H  1 k) - MZK ()I

Ir (2) 2 (2)-
r - Z -i r IvNrH1 ()C± (I + M)r

Finally the result for 5M 2 /q is

(D-17)

6M ACp6A £ r ' N 2F i_5_ Z' - 2 2 2) ds

q p iTN rF L - i-~ T MNkr H,(')'k) + rZ (HM') 1,,Z (k)J ds
q 2 . r

For steady flow (k -0) the Hankel Function i2 H0 (2)(k) - Ink - -

Thus the second order moment, is unusable. It seems obvious that higher

order moments, where n is even, will also give results that are unbounded.

The higher order moments, where n is odd, will give finite results since at

T = 0 the results are zero. Moments of higher order than one are of interest

in cetermining generalized forces; however, as shown above this method can-

not furnish them.
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SUMMARY

6F AC 6A r " NSF = p_ f (k) r -" .
q )J r 1 F ds (D-I8)

Sm aC -A , iN • Nt

q 2n r p(k) r r F ds (D-1 9)

f k) = - k I(Z) (-)2 1

7T (2) (k
p(k) = M k H0  (k)

-k = Zkr M r/c

k 
=

r 2U

N = direction of pressure doublet

E = direction of F

r i r position vector from doublet to point onr body cross section.

F = force in the direction if iF

M = moment normal to iF (positive nose up and nose right).
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APPENDIX E. NUMERICAL EVALUATION OF THE

FORCE AND MOMENT INTEGRALS

.The expressions to evaluate are derived in Appendix J) and are:

Ac 6Af - i N
6F/q f kTr r n- i Fds

-Ac 6A -1
6M/q IfP P(k) i r  N n i ds (E-Z)

2 j

The basic approach will be to break up the cross section into a series of

elements over which ft-k) and P(k) are assumed constant.

Ac SA N ji •NNe

6F/q = 1P 1A Ir Nn.iF ds (E-3)
ZTr j J-e. r

Ac 6A N e
8M/q - I N n i ds (E-4)

r F
3

There are no singularities involved in the integrand of Equation (E-4);

thus, a simple evaluation is permitted.

Ac 6A - " -(
6M/q = - (r" - N n. iF) Ze. '  (E-5)

J=l

Such is net the case for 6F/q; As r -0 the integrand is singular like I/r

and thus care must be taken in its evaluation. As a matter of fact several

procedures were tried and methods which ignored the currative of the sub-

elements were found to be inaccurate for field poi-its (x, y, z) lying close

to the cross section. The rermainder of this appendix will be devoted to the

evaluation of this singular integral which will be termed 1.
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e -Lr N n '

I 2 F ds (E-6)

Expressions for r, r and n may be derived referring to Sketch (i£-1).

(x, y, z)

e
Z, k

nx

' /
a (RADIUS OF CURVATURE)

(CENTER OF CURVATURE)

SKETCH E-1.
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It is assumed that over each element the radius and center of curvature

is constant. The first quantity to evaluate is r. From Sketch (E-1) it

is easy to see that:

..% .-% -.% .

R+ r s t -e (E-7)

it is assumed that the element length is small compared witb the radius

of curvature. Thus

2
E n -a (E-8)

If terms of order s2/a 2 and higher are neglected, then
i -% I. -% s

n e + t (E-9)e e a

Noting from the sketch that

n k cos k - j sin Xe

t = j cos X + k sin X (E- 10

R = (y- + (z K

Then solving for r in Equation (E-7) and n in Equation (E-9),using (L,-10),

gives:

y- - ) + s cosk + +sin X

k - (z - p) + s sin - csX - cos %

j cs x - sin X, + k sin X + cos XI (E-IZ)

207



fr/

Retaining terms linear in s 2 a gives

2
1 s D/a (E- 3)

Z 2 + Z2(
r s + 4Bs R (s + Bs +R

where

D R sin ( - R)

(E -14)

B -ZR cos ( -

and where the angle 4 R is defined implicitly as follows

R cos R Y - q(E-15)

R sin R z -

The angle bR is shown in Sketch (E-l). If

N Ny +kN 7  (E-16)

IF = i F + kiF
y z

then the numerator of the integrand of Equation (E-6) is (retaining only

terms linear in s'/a)

_i - - I 2 LR
r N n •F s + (J + - )s + R K (E-17)F a a

where

y + zN i 3/2 coszX -1 + N i 3/2 sinXcos X)

Y (E-18)

+ N iF  3/2 sin 1 N i F  3/Z sin% cosX
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J N i F cos X sinXl + N i F Vsin 2 x

'Y (E- 19)

+ N i F cos X sink~ + N i 02Kz Y z

L NyF Cos Ros k + N i sin cos X

yY (E-20)

+ N i -sint sin X + N i Cos sin X
z Fz R y O RzfR

K = 1y i cos sin X + N i sin Rsin
y F 

(E-zl)

+ N iF sin CRcos X + N i -cos b cos X
z zyF R

For convenience let

= + LR (E-22)
a

Then

r N n i - s + J s + R K (E-23)
F a

The integral I then becomes

I~~ f___ K+ is + R 2 2
-e s + Bs + R(E-Z4)

+ s D/a 2 1d(RZ + Bs + R-) ds

Expansion for R/s > 1. 0

When R/s is larger than 1. 0 an expansion for Jarge R/s is appropriate.

Retaining Lerr.s of order R and lower gives:
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4

T
R, 3 3 R/ i R

+ K(P) + B)

'' 5 [ ()12 2
+ ~ 1 1 LKV + 1 - + DL

5 \R4 a -z (E -2Z5)
a(

R 2 ( R) + 4 3

+ I B - 1 + Dj)

SpecificallyEquation (E-25) is used when

(R/e) 1 1. 5

inner or Exact Solution

For R/e < 1. 5 an inner solution is required. The integral E-Z4 can

be performed analytically. A conplicated expression results:

I\ 2 2 2(4R B)

+D RKZ 2 tan~ e Pq -7 \Z
2 2 z taz

a (4R B N4 A2B R -e (E-26)

J DB In + R 2 + e++ )1+ +- iln -- +R --1a 2 2 a Z e\z+ R 2 e] a

D [3R 2  -Be B+ (2R -~ T)R

+ 2 ] 2  J

+(4R Z -B 2 ) (eZ + Be + a")
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_ -(3R -B 2 B 2

(4RZ BZ) (eZ - Be + R Z )

+ DRK [(B - 2R2e+BR . c d,-26)
a(4R Z - BZ ) (eZ +- Be + R Z )  continucdl

(B 2 -ZR ) e +BR 

(4R 2 - B 2 ) (e2 - Be+ R2) J

Simplification of this expression is desirable to reduce tho computing

effort. Equation (E-Z6) holds only when the field point is close to tho

cross section. The elements can be arranged so that the element closest

to the field point is centered with respect to the field point. Specifically.

the center of the closest element lies on a "normal" coordinate line pass-

ing through the fieid point. Sketch (E-Z) shows an example for an ellipse.

z

///

/ \ XP yy

SKETCH E-2.

211



An expression for this normal coordinate will be developed later for an

elliptic cross section. Under these circumstances the difference in angles

X - R is close to 90*. Since B is proportional to cos ( - ) it is small.

An expansion for small B may be made retaining only linear terms. The

result is

R J B +RK D JB + RK K 1

ZRe I 2e I
tan + +-....

a!

eB_+R D7B e (3e 2 + R 2  D DK R e

e2  RZ a .a(e 2 + R2) a

for R/e < 1.5

Speial Considerations 'or an Elliptic Cross Section

The location of the element closest to the field point must be chosen

such that its center lies along the normal coordinate curve (which is a hyper-

bola) from the field point to the ellipse. See Sketch (E-Z). The first thing

that must be done is to find the elliptic parameter 01 which is constant along

this line. Once Ei i b kiwg L~, jjuihi, ux, ti= ellipse wnere tne nyperoola

intei,_c.s it can be computed. The equation for the hyperbola is:

2 2
- 2 = a - (E-28)

cos sin 1

where y, z are the coordinates of the field joint and a and b are the semi-

width and semi-height of the ellipse, respectively. Equation (E-28) may be

I2
solved for sin 2 2
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z -A + 'A + 4(a Z -b)z
sin Z Z (a - b ) (E-29)

2. b 2

A (y 2 + z + - a2

2 b2
when a = b

S 2 (E-30)

The quadrants are assigned as follows

sin 01 sin aignz

(E-31)
cos 0 1  J1 - cos 01 sign y

The equation of the ellipse is given again as

y = a cos e

(E-32)

z = b sin 0

The location of the center of the first element is then obtained by placing

the value of O1 in place of 0 in Equation (E-3Z).

The first element has been located. The other elements are found by

dividing the 0 coordinate equally from 0 = 0- 3600 in N equal parts.

The half width of an element centered at 0 is

7T -1 a sin 0 + ccs 0 (E-33)
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The radius of curvature of an element centered at 0 is:

(a 2 sin20 + bz cos20) (E-34)
ab

The slope of an element centered at 0 is

= an- - cot 0) (E-35)

All quantities are now known for the evaluation of 6F/q and 6M/q for

elliprfic cross section.
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APPENDIX F. EVALUATION OF THE STEADY LIFT FOR

CIRCULAR CROSS SECTIONS

The most important contribuion to the lift is the one due to the steaiy

part. Setting f(ko) = 1 in Equation ,Appendix E,gives:

6F(s) AC 6A (i . N)
- - (n i ) ds (F-i)J *Fq Zit r

where A C acts .. the direction of IN and 6F in the directi.,n of i

The evaluation of t'is integral for various cross sections will be the sub-

ject of this appendix.

The Circular Cross Section

For a circle Eq. (1) becomes

6F(S) AC 6A_ _ - P_ _ I
q 2Tr o

where I f2T N rn. iF a d0
wher I =(F-2)

0 r 2

and where r = i r.
r

r.N n F i F. O (-ra R) sin

1F i a cos 0 sin 0 +

iF iR a i cosOsin 0 + (F-3)

IF i6 a i- sin 0 +
7 2

"i 1 (a IRcos b - ra cos 0)
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where a rotated coordinate system is used

iRNL Ya z a
R -ia + k a (F-4)

ra

N y z

16 =k a jr r
a a

Here(ya, za) are the coordinates from the bcdy axis to th,, pressure doublet.

2
Also needed in Eq. (2) is r

r = r + a - Zar cos 0 (F-5)a a

Placing (F-3) and (F-5) into (F-2) and deleting integrals that vanish gives:

I 0 alI a iF . IR a ± (- r I + aI ) (F-6)o eF )a s F ac cc

where
7o T 2f in 2 O d O

s A- B cos 0

I = cos 0 d 0
A - B cos 0

Icc f o cos 0 d O

A -B cos 0
2 2-

and A r + a

B 2ar
a

The tezhnique of splitting integrals into odd and even parts will be used

The technique will be illustrated for I s only.

216



sin 0dO T sin2  0d 0 T-sin 0 dO
1 s Jo A-B cos 0 =1 A-B cos0 + J A+Bcos0 +

sin 0 dO f sin 0 d0

A-B coso A+B cosO

Combining the first two and last two integrals gives:

Z2
Tr sin2 0 d0 ,+ B I cus 0 sin2 , d0

= 2.- + Z Z c'
fo A B cos E) B

The second of these integrals is the "odd" contribution and is zero.

I = 4AT (F-7)
s s

f sinOZ0 7

where I dO .-- i 2 2Z d-(r 2+
sA Z-B ZCos 0 4a2 A

0 a

or
+s 2 (F-8)
a r

a

(Z2 2,?
where Q - r -a a

In a similar manner

I ZBI (F-9a)
c n

11=1ZAIn (F-9b)cc, n
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cos z dO 7 rQ
where I= 2 fZz Cos 2a 2 r 2 r 2  [-a1 (F-9c)

a a

The term (-raI + al ) is to be formed for Equation (6).

-r I + aI - 2a r 2 -a2 )I (F-10)
a c cc a n

Placing (F'-9c) into (F-10) and the result into (F-6) aizng with the result

for Is gives:

i iF - iF R IR - ) sign (ra -a

a a

where Q r -" ra a  +-( a ')

2 2 a 2

> a (doublet outsid body) Q = a sign (r 2 ) +
a

2 2 2
r a< a (d'I-)blet inside body) Q= r ,sign (r a  -a ) -

Equation (F--1l) can be written as two expressions d-pending on whether

the doublet lies internal or external to the body. Placing these two

expressions into (F-I) gives:

Doublet Inside Body

6F ( s )  ACp 6 F  N (F-12)
q 2
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Doublet Outside Body

() (AC pA6A
q " 2 N 1  (F- 3)

where N iLu + l R

N1  = !j - R i R

Equations (F-12) and F-t3) describe a very peculiar behavior. Take for

instance the case where these equations have a cummon point ra = a.

AC 6A AC 6A
6F 'q z 2 iF. N 2 {(iF i 0) p 0 + F R) R' ra - a -

(F-I ")

AC 6A AC 6A6 F ' q = 2 F 1 2 (iF (iF N 1  .R " P - ' , a  a

Notice that the contribution of the component z (one oriented normal to the

z
radius vector from the circle center, see sketch) is continuous when the

doublet passes through the body surface. However,:ab is not the case

for the component - (oriented parallel to the radius vect.or).

When the doublet passes inside the body the forc- on the body die to L

changes sign. ,Vhen the doublet is anywhere inside the body, the force
AC 8A

is equal to p and is in the direction of the doublet, N
2 AC 6A

When the doublet is outside of the body the force is tqual to z (r aa)

and is in the direction of N 1 .
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APPENDIX G. CIRCUMFERENTIAL INTEGRATT ON OF

THE PRESSURE FOR BODIES OF CIRCULAR

CROSS SECTION IN BOT'H STEADY

AND OSCILLATORY FLOW

Steacty Flow

The expression for the pressure field due to a point pressure doublet

..n steady, fiow is

Cp (:, y. z) ACp 6A (i (G1)= " 47r "-- R G l

where

R2 = (x - ) 2 + 2r 2

2 =(y - 77)2 + (z - )2

Lawren-e and Flax' 7 have integrated this equation, in an approximate

marner, around a circular cro~s section. Essentially, they obtained only

the force in the z-direction (see Sktch G-1) due Lo a pressure doublet

oriented in the same direction. Tbeir results will be rederived and

extended to obtain the force in the y-direction due to a pressu.,: doublet

oriented in the same di'ecaion. Also, it will be shown that the force in

the z-direction due to a doublet oriented in the y-directioii (and vice versa)

is zero.

For simplicity of notation the origin of coordinates is fixed at the

ciecle center and the pressure doublet is assuii.e'1 to lie on the y-axis.

This results in no loss of generality since the .- and z-axis m ay be

thought of as simply a coordinate system that has been translated and

rotated so that these assumptions are satisfied.

Equation (G-l) may be rewrittein as: *

Cp(: y, z)=dCp 6\ j2Y4r - - ) 0  (y - 7(

Cp ( y{)

whe I C N i 0 
1e i r N

p: 0 and 1.r are used to be consistent wish Appendix F.
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Introducing the coordinates of the circle, y = a cos 0, z = a sin 0. noting
0 0

that 4 0 and q = r and expanding in terms of ao/R gives:

ACp 6A Ri2  3__________s
Cp (x, y, z) A4p -W - 3a7rar 2 C°S0 .

a a (G-3)

a sin0 ji0 + (a cos 0 - ra) '1 rL

where

R 2 +f 2a 2 
- Za r 8 2 cos0

a 0 o a

and

R2 = (x - 4)2 + f 2 r 2
a

Equation (G-3) may be integrated circumferentially to give the total force

per unit length.

( (/q) £ -
ax = p(k sin0 + j cos 0) a dOax o

ACp 6A 32ao ( (_ 3ra2 32\1~ (G-4

4 Rk I Rg

r > a

If (G-.l) is cxpanded in terms of r /R then the results are

ra 

a
a9(F'q) ACp 6A #2a -1 "t 1 n

a

where
whre2 (x - 4)2 + '82

a o

Notice that there are no c-oss terms; i. e., z-force due to y-doublet or

vice versa. Equations (G-4) and (0-5) cover the entire range of ra .

One way to measure the accuracy of these equations is to integrate tl !m
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longitudinally from -c to +o, holding a constant, and compare the results
0

with the exact values obtained in Appendix F.

Integration of Equation {G-4) gives:

-~ I Cp 6A a
-Frq -- "r7

Sa(Y/q) X 2 72 k -J a-CO (G -6)

r ra  > ao0

F/q - 2p6A k rr  a -7)

These results correspond precisely to the exact values even though approxi-

mate methods have been employed in the derivation. It can be shown that

even though the total iiit-grated values are exactly correct the distributions

are only approximately valid.

Oscillatory Flow

The results for steady flow are very encouraging. The exact total

integrated lift is obtained from an aporoximate result. A similar line of

development may be made for oscillatory flow.

The expression for the pressure feld due to a point pressure doublet

in oscillatory flow is:

p (x, y), Z) e~ (GA -) ( 8)al -~x47r N R

where
wM

' 2U,

Taking the N-derivative and substituting = 0, i7 r and, z a 0 sin 0

and y = a cos 8 gives
0
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6A ep( i\M (x - R)

C p ( x , y , z ) 4 7 r ( G -9 )

X I + f2 a sin0 + [r(a cosO -r

-iXR.
If R is expanxded in terms of a0 !R., as in the steady case and if e !S

expanded in terms of X i? a6 2 -os 0/R a then:

-iXR _ixR a  ( iXa r ai 2  cosO +

e -- + o R
a

Also

1 -ix -x 3 8' ar cos9 i ) fl 2 ar cosO
=3~y V; +2 )1 + R2 R

Va al ' a a

Thus

c2 i~Rfi oOp (x, y, z) C~ a2  1+ ora f  oOX

0 a

U 0 "osin6 + jr (a °  cos 0 - r a) I X

2 3482a r cs X. 2a r Coso
Oa _ o a

R3 1R2 R2 R 4

where

K a sn +[raoc a2.-1 7 0

a(Fz/q)
Cp a sinc dOs

ax a

iX3~~ia rr \ 1

= 0 C 13 R2 si4O+ cos 0 sin2 Ra

+f ila °  a d
i X ,642r2

+ Cos 20 sin2o R3 o a d +
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rf[ a i ara#2]
a cos0 sin 2

9 + cOs 2
6 sin 2 0 do 1

a a

-- e c [-+ R +4]R G -10

i2, ' "a 2 r 2
a a a

Ras 4

a(F-I q)r
= Cp a cosO dOO~x 0

G + f aae

+ R R a s+ cos 0

a a a

3fl2r 2 .os2O 3Ua r 2a_ __ _ a a

1 2 -+ R3 - Cos
a a

3 Da r a3 o 3  I- __) oa
- dO

a

a r r iXa cos0
cos 30 " cOs'O + R

i~r 282CO3 ]

30]dORa
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/(FIq) v7 .I+rr a2 p 2 _
r 2l 

R aT ilka

a 
aa ]i3 2 r 2 r i2a 2Gl

a Ra

To check the accuracy of the expressions given in Equations (G-10)

and (G-11) an integration will be perfoimed in the x-direction from -. 0 to

+o and the results compared with the method derived in Appendices D and

E which are the exact results.

If the highest order termns in equations, Eqs. (G-10) are dropped,

then:

9(F-/q)/0x 6Cp 6A eiX[M(x- + 2 a 2

2o eXi) M(x_ _Ra ]

,. a a

CO

F-/q i (Fz/q)/ox dx

-- ,CO

Aa2 'f ix[M(x- 4) Ra]

I 4 ra ar a--- R a
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The integral appearing hf-re is precisely the integral I appearirg in Appendix

D, Equation(D-3).

I i7rH (2)(i)

-f ak -- aM
UVo

where H (2) (I) is the Hankle function of the second knd and zeroth order

a i7rH ( )_M
a UO

then a
A~6.o H(2)kkF z/q r L a r--Z--H I ()k(I)

Sketch (G-2) shows that the agreement between (G-12) and the results of
Appendices D and E is almost perfect. If the highest order terns are
dropped from Equation (G-l1) and the results integrated numerically the

,esults again agree with the resalts of Appendices D and E. This result

is also shown in Sketch (M-2). The simplified formulas are then:

a(Fz/q) ACp 6A 2 a 2 i[M(x- )Ra] 1 iX (-13)

x O 4 ao e (

r > a
2 2
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0.5k 
0.

F- F
qq

-0.5 
O 

aa

Exact (Integration of E-18)

F0 Approximate
tEq. G-12, anc; liumerical Integration
of G-14)

0.5%1 0

F- =F

q q

0_

SKETCH G-2

-1 .0
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Y = v - - _ - P--,

= yq ACp 6A~ i LX ixafi 38r

ax4 R 3 R2 I RaOx 4 ! a a Ra Pa"

____ __ iX[M (x-a) - a](G -14)+ l~a p 2 a2 ea
+ Ra4 a

r > a
a a

Following the steady analysis the expressions for r <a may be obtained.

(Fz /q) AC, 6A eiX(M (x-4) Ra) IA

ax 4 o 7 +=R a 2 (G -15)
r a0 <Z a o

-Y-r zr < a

a o

-- - r .<_a

a x F ox a o

where

Ra 2  = (x- )2 + 8 2ra2

2 = (x 82 " ao2
a 0

As in the steady case the integrated values agree with the exact values.

However, the distributions are again only an approximation.

The coordinate system used to derive the formulas (y, z) for the forces

is one that has been rotated an angle 01. This rotation was performed so

that the pressure doublet will lie on the y-axis of the rotated system. A

transformation back to the y, z system is necessary to complete the deriva-

Clon.
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(Fz/q) a(F-/q) _(F/q)0( cOs201 q sr 0 x sir 2 (G1  x 17a)

+ r CosOu sinO (a(F/q) (F-/q)
r I I x 0

(F z(Z) I a(Fz (Y)/q)
- 1 ax ax (G-17b

a(Fy /q) s2e !(FZ/q) +cos0(F/q)
x r I sx 1 a-y-

( z (Y)/q) (G - 18a)

+ , (l ()q
0 x

( (F (Y)/q) + , (Y) / q)y'r (G - 1 8b)
r x a8 x

The new variables, a(F z(/q)/ax, (F /q)/ax and a(F z(/q)/ax are

defined implicitly by comparing Equation (G-17a) with (G-17b) and by

comparing Equation (G-18a) with (G-i').
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F
APPENDIX H. INTEGRATION O- a(, Iq)lIx

OVER A BODY ELEMENT

The circumferential integration of the pressure for a circular cross

section was performed in Appendix G. In the present method the force

distribution is given, not at every value of x, but a- a set of points which

correspond to the midpoints of a set of body elements. The value of the

circumferential integration, a(F/q)/x, must be aver ged over these lements

If it is not then errors could be introduced due to local variations over the

element. As an example, Ske'ch (H-i) shows what might happen if averag-

ing is not perfoemed.

Value at Midpoint

t__ _ _ , _ Average

; (Fjqa) x

I I

Typical

Body Element

SKETCH H-1
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Il

The exDressiorn to be integrated may be written in the following form.

a(F-"q. (H-i)

O(F-q)
y I f- (H-2)

ax r y

where

fv = f- + GcrL (H-4)

and *',ere

L R a 2 X2 . 3 -O (H-5)
a a a

A~p6A eiA[M (x-4) - R] ia H6=r 2a 2 (H-6)C .. 4 e02a

The average value of O(F.-/,b)/ax and (E-/q)/9x over an element stretch-
ing fromxA - to xs A  is

-+ Ax(F/q)

O~~l)Ix = x"J. dt (H-7)

- xz ax

= --q)/.g - -- dt (H-8)
y Ax a

where
w xA +t
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A

The terms xA and Ax are the element midpoint and length, respectively.

If XA + t is substituted for x in the expression for R a and the result

expanded for small t/R the result i-aAi

R = R i t----. (H-9)A/ .A \aA A  A

where

RaA (xA- ) 2 + #2r a2

Placing Equation (H-9) into (H-6) and expanding for small Xt gives:

ACp 6A 182a 2  i[M(x- )-Ra] A G 6A 2ao2 i\[M(XA- )-RaA]
4 e A

i[Mt - (xA- ) __t2 Ra
e RaAiRaA RaA

a 2 Ax , .82 11 + iX(tA - t2B)' (H -1O)
0

where

- ACp 6A iX[M(xA-)-RaA]o 46x e

A = M- T

f 2 r 2
B - Ra

aA

(xA - )
RaA
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'1 a Ra a

iX KX2A t + 0 2t2)
Tl +O(' cit (H -11)

a(F 1q)/lx a(F-lq)lOx

2 Ax 3iXAt
+ "r a

a RK=, + R 5
a a a

Define a new reduced frequency variable, k.

22 k Ma/ Xfa0a (H-13)

If k is introduced into Equations (H-Il) and (H-12) then:

= a 0 1 82 A 15)

(H- 14)

+ i - (A 1 + 14 - 13 B)

(Flq)l&x =o(F/q)/b, A (H-15)
y z
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A6 Zr a1 34a 2 16 +k 1 ±3 1

+ i 2 a 031k(- A 1 7 + B 1 8 1 9 ) + ik3 A I z/1 2 a

where

Ax d 1 ((xz 4 (xi 4)

1 R3 822 R _

2 1

( x- Ra x A)xR2

A RZ T- 2r 2 { R + Rx~)

t2dt2
1 3111- Z(x A -) I R Ra 2

Ax a A

tXdt 1z- +(i

2 
d'I 4~~t2dt 2

Ax a praf a 'r
-T

'--, Ld Ra26

n x 1



~(xZ-0 (xi -0) ~ __ _= d r - R ( + Z3r~ 1 4
IX a a a a1
22x (XA + Ra (x-)- 2Ra

t dt 1 (A 2 aA A)z RaA~
10 = R4 = Z 2 r 2  R 2 + R 2

Jl a a a a
-2-

(xA-4 )
S r-- 14

wheru

x = xA - Ax/Z

x xA + zx/2

R 2 (X, + P2r 2RaI  Ax a

R = x2Z X )2 + Pr 2

Approximate formulas, yielding less than 2% error, are used when

ix/ /.K < 1/2. Let 6 = Ax/R and 7* = (xA- )/R

1 ( - "(-I + 5-2) 62
a a

12 = 1 A 3 7/ 4)
aA

13 = 6 3/14

131A 6 1 (-1 + 3-r2) 621

14 R 12
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5 6
15 = 16 2

6 4- 6 ]+ (-1 + 77-2) 2
P. ~ 24

a A

aA

1 8 = 1 2 63 1
aA

2 2)19 T RaA

6 610 Ra 2

A

12 = I3  0

14 R -

aA

1 0
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6 R

16 R 3
a A

17 18 0

The formulas given in Equations (H-14) and (H-15) are valid for r a > a 0
For r a a 0simply replace R awith a and set A 0.

R a 2a 2 a A2+pa02
0 A

A ~ 0 aAo a
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